
The Internet contains Thousands

of Poorly Explored FUTS Data Sources

Pedro Bizarro, Paulo Marques, Rafael Marmelo

CISUC/DEI – Polo II

University of Coimbra

3030-290 Coimbra, Portugal

{bizarro, pmarques}@dei.uc.pt, rjmm@student.dei.uc.pt

Abstract. The Internet contains thousands of Frequently Updated, Time-

stamped, Structured (FUTS) data sources. This type of information represents a

different class of information that is not properly handled by existing data

management systems such as databases, data warehouses, search engines, pub-

sub, event processing, or information retrieval systems. In this position paper

we describe 9ticks, a system we are designing to collect, parse, store, query, and

disseminate FUTS information. 9ticks is helping us understand that all those

steps raise new challenges but also bring new opportunities. In this paper we

summarize the challenges identified and present our vision of an end-to-end

FUTS management system.

Keywords: Internet, database, events, event processing, web crawler, extract

web data, manage web data

1. Introduction

The Internet contains thousands of Frequently Updated, Time-stamped, Structured

(FUTS) data sources. Unlike semi-structured personal web pages, news sites or blogs,

many of those FUTS sources have a very regular structure. Some of those frequently

updated data sources are web pages or portions of web pages that, as if they were

sensor streams, represent states and updates of real-world things. Examples of such

pages include sports scores, stock and exchange information, real-time flight details,

weather reports, auction values, traffic reports, monitoring tools (such as Ganglia’s

cluster monitoring tool [10]), product prices and rankings, DHL and FedEx tracking

sites, and many millions of tables with structured information [5, 6]. Similar to a

database record, much of this information is composed of a regular, fixed schema of

easily inferred data types such as dates, strings, numbers, or unique identifiers. Many

of these events – as they are sometimes called – could be used to detect interesting

patterns or make important decisions. For example, is road traffic delay much higher

today? did my DHL package arrive? is my flight delayed? was there a price drop on

my favorite vacation package? what was the average price between a British Airways

NY-London flight last year? Currently, users either discover new updates to those

sources using simple push mechanisms (e.g., site-by-site alerts or RSS feeds), simple

pull mechanisms (e.g., browser or email refresh), or simply not at all!

2 Pedro Bizarro, Paulo Marques, Rafael Marmelo

Although there are many systems that crawl, parse, store, index, and query the

web, none is able to capture FUTS data sources and, thus, their values are lost forever.

In fact, search engines such as Google don’t give much freedom on querying the web

as of a point in the past. Sites like the Internet Archive [12] display glimpses of the

past, but not detailed enough to, say, determine the average price of a NY-London

flight. Zoetrope [1] allows the user to see the past but only for a small subset of pre-

selected pages.

We believe that FUTS data sources are not being properly handled by current

systems and that there are interesting challenges and opportunities in building a new

type of system. In Section 2 we describe our vision of an end-to-end FUTS Data

Management System that is able to collect, parse, store, query, and disseminate

generic FUTS information while scaling to thousands of sources and millions of

users. Next, in Section 3, we identify some of the challenges of building such a

system. In Section 4 we describe 9ticks, a prototype FUTS Data Managing System

that we are building at the University of Coimbra. Finally, we summarize and

conclude in Section 5.

2. A vision for a FUTS Data Management System

A FUTS Data Management System (FDMS) is a system that regularly collects

information from millions of frequently updated, timestamped, Internet sources. Some

sources will be well-known, commonly requested, previously indexed sources such as

stock, weather or flight tracking information which might even take advantage of

special protocols and adapters to obtain information before it reaches the web. Other

sources will be user-specified sources.

There are hundreds of applications to obtain information from single, well-known

sources. These applications target those commonly requested sources, and run stand-

alone in personal computers or smartphones or, as widgets or gadgets as they are

commonly called, included in personal dashboard web pages as provided by services

such as Alerts.com, iGoogle, NetVibes, PageFlakes, My Yahoo! or Webwag.

These services handle the commonly requested data sources but: i) cannot track

user-specific needs, and ii) force the user to install many tens of similar applications

or widgets. For example, although there are many applications to track the English

Premier League football, there is no similar application to track the Portuguese

Second Division football results even though the results are made available in real-

time on the web.

The challenge, then, is to build a generic system that can treat any information on

the Internet, such as a user-defined portion of a web page, as a data source and send it

in a timely fashion to specific users. For example, assume someone wants to track

how many references are there in Google for “9ticks”. In

our vision, that user searches Google for 9ticks. Then,

using, e.g., a browser plug-in, she clicks the Item Capture

option of the browser plug-in (Fig. 1) and next she selects

the total on the search results page (Fig. 2).

Fig. 1. Select capture mode

Fig. 2. Select the item to capture drawing a box with the computer mouse

The Internet contains Thousands

of Poorly Explored FUTS Data Sources 3

The plug-in then parses the page to obtain the path to the

selected html element. Next, the system infers the type of the

selected element based on the value and using a library of

common type formats (some examples of possible inferred

types include integer, real, date, time, currency, temperature,

DHL tracking number, football scores, golf scores, or free

text) or asks the user to provide type information. This

information, as well as a refresh rate (user-defined or not), is

then transmitted to the FDMS as a new data source to track.

Periodically, the FDMS schedules jobs to collect and parse

(potentially new) information from the data sources, stores

them in persistent, distributed storage, and pushes new

information to clients as needed. The user can then see the

new source in her personal web page or mobile device

together with all the other things she is tracking (Fig. 3).

Different types of events will be represented with different

graphics or colors depending on data types or user choices.

In addition to seeing the most recent values from her data

sources, a user should also be able to browse back in time and see past values,

summaries, or trends.

We expect that in a FDMS such as the one described above the number of

subscribers per source will follow a Zipf’s distribution [4]. That is, some sources will

have millions of subscribers and millions of sources have only a few or just one

subscriber. Building a system with millions of sources and millions of users, where

data is extracted from web pages, and where the structure of those pages, while

mostly fixed, might slowly change over type, identifying multiple sources with

equivalent data, optimizing the refresh and push mechanisms, and delivering data in a

timely manner are big challenges that need to be overcome. In the next section we list

a few of those challenges.

3. FDMS: Challenges Ahead

A FDMS needs to collect, parse, store, query, and disseminate FUTS information.

Below, we detail challenges related to those activities.

3.1. Frequency of Revisits

Unlike a search engine, a FDMS has no set of crawlers, jumping from page to page,

parsing pages and following links. Instead, the system will start with a number of pre-

defined sources and will grow as users add their own preferred sources. While the

number of indexed unique sources of a FDMS will be much smaller than the number

of unique sources collected by a search engine, the frequency of revisits of the FDMS

sources will be much higher than the frequency of revisits performed by a search

engine crawler. For example, while Google crawlers revisit personal web pages on the

Fig. 3. A FDMS client

showing multiple

sources and running in a

mobile device

4 Pedro Bizarro, Paulo Marques, Rafael Marmelo

scale of once every week or every month and crawls high-ranked sites such as the

BBC several times a day, a FDMS might have to obtain fresh data once per minute

(e.g., for football matches or stock updates). In addition, the optimal frequency of

revisits of FUTS sources will vary with time (e.g., there are no stock updates during

weekends or at night), might be irregular (e.g, only needs to get fresh football scores

on game days) and might be knowable (e.g., the exact day and time of games is

known before the game starts).

3.2. Collect and Parse

Although the information we want to collect has a regular fixed structure (e.g., a

Manchester United football score has always two numbers for the home and away

goals), the location of the information in the page might change (e.g., the score

information might be in any row of a table with the week matches) or the structure of

the web page itself may change. Thus, the correct place to fetch the data from might

not exactly match the path stored upon the data source creation. The collect and parse

process must be robust to those changes. Finding the location might imply a similarity

match between the tree structures of the original and current web page versions.

3.3. Storage

Given the scale of the data to collect and store, a FDMS must have an appropriately

scalable storage system. Some of the most scalable storage systems ever built are

Bigtable [8] and HBase [3], the ones used by distributed programming tools

MapReduce [9] and Hadoop [2], the tools that support the search engines of Google

and Yahoo! Those storage systems however, are optimized for high throughput and

for batch updates and are likely not appropriate for low response time, continuous

inserts. Recent work shows that Hadoop has response times orders of magnitude

higher than database management systems performing the same tasks on the same

clusters [13]. We expect that developing a petabyte-scale system with millions of

queries per day, with very low read response times and very high insert rates is the

most challenging task of building an FDMS.

3.4. Query

Building a system that is simultaneously efficient for range queries (e.g., stock values

between two points in time), window aggregations (e.g., computing 1h moving sums

of the volumes per stock symbol), and continuous inserts using a distributed storage

system will be challenging. In fact, the data management market is now segment into

different products (databases, data warehouses, event processing systems, and

distributed storage systems), each specialized for different types of operations. The

specialization of those products is such that, e.g., Hadoop does not even allow the

selection of all values between two timestamps.

The Internet contains Thousands

of Poorly Explored FUTS Data Sources 5

4. 9ticks: an early prototype

At the University of Coimbra we are building a prototype FDMS code-named 9ticks.

9ticks already tracks pre-defined and user-defined sources, is able to detect simple

data types from web pages (integers, doubles, temperatures), schedules revisits of web

sources periodically, parses and extracts information from the pages, stores them on

Hypertable (an open source, high performance, scalable database, alternative to

HBase [11]), produces running aggregations automatically and sends results to web

clients.

Currently 9ticks is deployed in a Service Oriented Architecture as shown in Fig. 4.

Although a SOA is not the best design in terms of end-to-end response time, it will

allow starting with an initial system and continuously re-design, replace and scale

components as needed with minimum disruption to the other modules.

The Browser Extension module is a browser plug-in that lets the user select a piece

of a web page as a user-defined data source. The plug-in captures the path to the

element selected by the user, identifies the data types in question, proposes display

modes and refresh rates, and then sends everything to the Crawler module.

The Crawler module is responsible to regularly poll data sources. This module is

composed of several sub-modules with the roles of Adapter, Collector, and Scheduler.

The Scheduler assigns tasks (e.g., data sources to poll) to Collectors. Collectors

perform the polling using Adapters to convert data from the sources.

The Alert module is composed by an Alert Engine and an Alert Notifier. The Alert

Engine continuously reads the new information collect by the Crawler module and

checks which information needs to be sent to which users. The Alert Notifier then

sends the information to the user using one of possible multiple channels (e.g.,

dashboard application, email, SMS). Currently, the Alert Notifier only sends

information to the user Web Client dashboard.

The Persistence module stores all the information (users, data sources, current and

past values, and meta-data) and is currently implemented on Hypertable. The

Persistence module automatically computes and stores running averages and sums on

some types of sources such as temperatures and stock prices. Those running

aggregates are computed at several levels (currently every minute, hour, day, month,

and year). Those running aggregations are then used to display past historical data.

For example, if a user wants to see a graph of the previous month (day) of historical

Fig. 4. 9ticks current architecture

6 Pedro Bizarro, Paulo Marques, Rafael Marmelo

stock data, then the system will read the aggregated values from the day-level (hour-

level) aggregation.

The Caching and Mobile Client modules, with obvious functions, are not

implemented yet.

The Presenter module implements the presentation logic by abstracting the system

to the Web Client and Mobile client modules. The Server Directory module is a well-

known service that allows the other services to discover each other.

We are currently working on the Browser Extension, Collector, and Adaptor

modules to allow more sophisticated user-defined sources, types, and queries [7], and

to make the scrapping process more robust to web page changes.

5. Conclusions

To conclude, the Internet contains thousands of frequently updated, timestamped,

structured data sources that are not being stored, parsed, aggregated, or queried. New

data management systems with new user interfaces, parsers, storage engines and

delivery mechanisms need to be developed to deal with this ephemeral, yet rich and

very useful information. We are developing such a system, code-named 9ticks, at the

University of Coimbra, Portugal. Unlike other similar systems that also store the past

[1, 12] and capture structured information from the web [5, 6, 7], we are first and

foremost interested in building a system with very high refresh rates over millions of

user-defined data sources extracted from pieces of web pages.

References

1. Eytan Adar et al. Zoetrope: Interacting with the Ephemeral Web. UIST'08, Monterey, CA,

October 19-22, 2008. Available at http://www.cond.org/zoetrope.html.

2. Apache Hadoop. http://hadoop.apache.org/. Accessed May 1, 2009.

3. Apache HBase. http://hadoop.apache.org/hbase/. Accessed May 1, 2009.

4. Ricardo Baeza-Yates, Berthier Ribeiro-Neto. Modern Information Retrieval. Addison

Wesley, 1999.

5. Michael J. Cafarella, Alon Y. Halevy, Yang Zhang, Daisy Zhe Wang, Eugene Wu.

Uncovering the Relational Web. WebDB 2008.

6. Michael J. Cafarella, Jayant Madhavan, Alon Y. Halevy. Web-scale extraction of structured

data. SIGMOD Record, 37(4): 55-61 (2008).

7. Michael J. Cafarella. Extracting and Querying a Comprehensive Web Database. CIDR 2009.

8. Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike

Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A Distributed

Storage System for Structured Data. OSDI 2006.

9. J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters.

OSDI 2004, pages 10–10, 2004.

10.Ganglia Monitoring System. http://ganglia.info/. Accessed May 1, 2009.

11.Hypertable. http://hypertable.org/. Accessed May 1, 2009.

12.Internet Archive. http://www.archive.org. Accessed May 1, 2009.

13.Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J. DeWitt, Samuel

Madden, Michael Stonebraker. A Comparison of Approaches to Large-Scale Data Analysis.

SIGMOD 2009.

http://www.cond.org/zoetrope.html
http://hadoop.apache.org/
http://hadoop.apache.org/hbase/
http://ganglia.info/
http://hypertable.org/
http://www.archive.org/

