

Pairs Benchmark

Revision 0.2

November 2012

CISUC, University of Coimbra.

2

Table of Contents

Preamble ... 3

1 Benchmark Specification ... 3

1.1 Input Data.. 4

1.2 Workload... 5

1.2.1 KPI Computation ... 5

1.2.2 Opportunity Signaling .. 5

1.2.3 Positioning ... 6

1.2.4 Order Placement .. 6

1.2.5 Risk Management .. 7

1.3 Output ... 7

1.4 Scaling .. 8

1.5 Measures ... 9

1.6 Execution Rules ... 9

1.7 Discussion: Is Pairs a good workload scenario? ... 10

2 Implementation and Tools ... 11

2.1 Data Generator .. 12

2.2 Query Generator .. 13

2.3 Translator .. 13

2.4 The FINCoS Framework .. 14

2.5 Validator ... 14

2.6 Configuration File ... 16

3 References .. 17

APPENDIX .. 18

A. The Pairs Metric ... 18

3

Preamble
This document introduces Pairs, a benchmark for evaluating the performance and scalability of

event processing platforms
1
. Pairs exercises a wide range of features and characteristics

commonly found in most event processing applications, including:

 Filtering, aggregation, and correlation of events;

 Detection of event patterns and trends;

 State maintenance, updated upon the occurrence of events of interest;

 Large number of simultaneous queries (increasing with the system scale);

 Changing load conditions.

The benchmark was designed as to assess the ability of the systems in processing increasingly

larger number of queries and input rates while providing quick answers – three quality attributes

equally important for an event processing engine. Pairs was also designed to be fully

customizable, so that users can carry out performance studies that resemble more closely their

own environments.

In the rest of this document we describe the benchmark workload, metrics and execution rules

(Section 1), and introduce the tools available for running it (Section 2).

1 Benchmark Specification
The scenario for Pairs is a brokerage house where a number of analysts interact with an

enterprise trading system responsible for automating and optimizing the execution of orders in

stock markets. Users of the system pose trading strategies which are continuously matched

against live stock market data. The exercised trading strategies belong to a category broadly

known in the financial domain as statistical arbitrage and consist in monitoring the prices of

two historically correlated securities, looking for temporary digressions that indicate an

opportunity to capitalize on market inefficiencies.

The general structure of the benchmark scenario, including the main entities and the

corresponding cardinalities, is depicted in Figure 1 below.

Figure 1: Overview of the benchmark scenario

Per every stock market M, a number of symbols (100) are monitored by the system, from which

half are known to be mutually correlated. Each of the users of the system manages exactly five

strategies. The number of users per market ranges from five up to fifty, depending on the scale

1 Throughout this document we use the terms Event Processing, Complex Event Processing and CEP

interchangeably to refer to any system capable of processing continuously arriving events with the

purpose of identifying situations of interest and reacting upon them.

4

factor. In the simplest case (5 users), there will be 25 strategies, each defined over a unique pair

of correlated symbols. On the limit, each pair of correlated securities is monitored by ten

strategies of different users, each with its own parameters. This structure allows evaluating not

only if the tested system performs well on a multi-query scenario, but also its ability in sharing

resources among similar queries. More details on the scaling of the benchmark are discussed in

Section 1.3.

1.1 Input Data

Input data for the Pairs benchmark consists in a stream of simulated stock market data with the

following schema:

StockTick (symbol: string, price: int, size: int, tickTS: long, TS: long)

Each incoming tuple represents a trade operation executed in the stock market, such that symbol

identifies the security being traded, price indicates the value in cents of the transaction, size

represents the amount of shares negotiated, tickTS is the time, in milliseconds, at which the

trade has been executed (i.e., simulation clock time) and TS is the actual time the record was

sent to the system under test (i.e., wall clock time)
2
.

In the standard configuration, 2 hours of simulated market data is generated by a data generator

application and submitted afterwards via the FINCoS framework [4] to the system under test

(SUT). For the sake of simplicity and understandability of results, all securities in the fictional

market have the same update frequency, so the symbol attribute is filled by repeatedly cycling

through a list of pre-generated Strings. The price in a tick is filled with data following a

geometric brownian motion, a stochastic process widely used to model stock price behavior

[1][7]. The size attribute is filled with random numbers, multiples of 10, uniformly distributed in

the interval [100, 1000]. The timestamp is filled with the time the tick was generated,

accordingly to the arrival pattern described next. The raw size of each tick tuple is 48 bytes.

Tick arrivals follow a Poisson process [1], with its λ parameter – which represents the average

arrival rate – varying over time, resulting in an arrival pattern as the one illustrated in Figure 2.

Figure 2: Input rate over time

2 The TS field is used for computing response time and must be added to the records by the benchmark kit

during the performance runs.

5

The reason for having a varying input rate is to simulate more realistically what happens in most

real event processing applications, where new data arrives at different rates depending on the

period of the day. Moreover, a varying input rate allows evaluating how the system responds to

progressively larger loads.

1.2 Workload

The benchmark workload consists in processing simultaneously a number of Pairs strategies.

All strategies perform the same set of operations, described below, although using different

parameters:

1. Compute KPIs: a couple of metrics are computed to indicate the current state of

correlation between the prices of the two monitored securities.

2. Signal opportunities: detects when the lines formed by the indicators computed in
previous step cross.

3. Position: once a possible opportunity has been spotted, the system checks if it must
change its current market position.

4. Place orders: if a change in market positioning is indeed required, the system must emit a
pair of sell and buy orders. This step involves identifying the appropriate values for the

parameters of each order (i.e., size and price).

5. Manage risks: once a market position has been assumed, it might be necessary to leave it

sometime afterwards if the securities prices keep drifting apart, countering the expected

reversal trend. The system must signal anytime price digression exceeds a given

threshold.

The steps above are discussed in further detail on next sections.

1.2.1 KPI Computation
The KPI computation starts by filtering the incoming stock market data, letting pass only ticks

from the two securities that are part of the strategy. Then, the prices of each symbol are

aggregated over a predefined time interval (e.g., the average price during the last 10 seconds).

These aggregates are then correlated to produce a ratio. Again, the last values of this ratio are

aggregated, producing the final metrics: the last value of the ratio, a moving average of the ratio

and upper and lower bands (which correspond to the moving average plus the standard

deviation multiplied by a positive and negative factor respectively). A schematic representation

for the computation of KPIs is illustrated in Figure 3.

1.2.2 Opportunity Signaling
The three values produced in the previous step are used to determine possible opportunities to

capitalize. This happens when the line formed by the values of the ratio crosses either the lower

or the upper band, a condition expressed algebraically as:

))()()()((

))()()()((

11

11

kkkk

kkkk

LowerratioLowerratio

UpperratioUpperratio

where ratio(t), Upper(t), and Lower(t) correspond respectively to the values of the ratio between

the securities, the upper band and the lower band at the time instant t.

6

Figure 3: KPI computation

1.2.3 Positioning
Whether the detection of a possible opportunity triggers the emission of orders or not depends

on the current state of the strategy. More specifically, a strategy can be in three distinct states,

namely: flat, long-short, short-long. In the flat state the strategy does not own any security. All

the strategies start and finish the performance run at the flat state. In the other two states, the

strategy holds a market position for one of the securities. For convention, long-short means that

the strategy holds stocks from the first security and short-long, indicates that it owns shares

from the second security. Figure 4 below illustrates the transitions between the states and their

corresponding triggers.

Figure 4: State machine of a Pairs strategy

1.2.4 Order Placement
A transition from one state to another is completed only after the corresponding BUY and SELL

orders have been emitted
3
. For that, the system must first determine the size and the price of

each order. The price of both SELL and BUY corresponds to the price of the last trade executed in

3 If the strategy is currently on the FLAT state, only a buy order for one of the securities is issued.

7

the market, for the securities in question. In practice, this means that the system must keep the

last tick received for every security being monitored.

The size of the orders is determined by the amount of funds available for the strategy in

question (in case of a BUY order) and the number of stocks currently owned (in case of a SELL

order), which in turn must be maintained and constantly updated by the system as new orders

are issued. The entire process of determining the sizes and prices of the orders is described in

Procedure 1.

Procedure 1 placeOrder()

 let toSell: the security to be sold

 let toBuy: the security to be bought

 let sellGain: amount of funds earned with the sell order

 let available: total funds available

1: sellPrice ← GETLAST(toSell);

2: sellSize ← GETSHARES(toSell);
3: sellGain ← sellSize * sellPrice;

4: available = CURRENTBALANCE() + sellGain;

5: buyPrice ← GETLAST(toBuy);
6: buySize ← 10 * TRUNCATE(available / (buyPrice*10));

7: SELL(toSell, sellPrice, sellSize);

8: BUY(toBuy, buyPrice, buySize);
9: UPDATEBALANCE(available – buySize);

For simplicity, the orders are assumed to be always accepted by the market and executed

immediately.

1.2.5 Risk Management
Another condition that might trigger a change in a strategy state is when the prices keep drifting

apart, countering the expected trend of reversal. If a strategy is currently positioned (i.e., either

in the long-short or short-long states), the system must signalize this increase on market

anomaly to prevent further losses. Again, the condition is expressed in terms of the ratio

indicator computed in the first step:

)(.)1()(gpositioninnow ratiopercratio

 , when in the short-long state

OR

)(.)1()(gpositioninnow ratiopercratio

 , when in the long-short state

Where ‘perc’ represents a percentage threshold, ratio(τnow) represents the current value of the

ratio metric, and ratio(τpositioning) corresponds to the value of the ratio metric at the moment

when the strategy took its current position.

When this situation is detected, the system must return to the flat state by emitting a SELL order

for the currently owned security.

1.3 Output

The output of the Pairs benchmark consists in two streams: Indicator and MarketOrder.

The first represents the output of the first step in the strategy execution process and is used in

the benchmark scenario for visualization and auditing purposes (the stream serves to produce a

graph like Figure 5 that allows users to better understand the decisions taken by the strategies).

8

Figure 5: Example of a graph generated with the values of the Indicator output stream

 The second stream represents the orders that were issued as a result of the execution of each

strategy. The schemas of the two output streams are shown below:

Indicator (MarketOrder (

 strategy

 ratio
 avgRatio

 upperBand

 lowerBand

 inputTickTS
 inputTS

)

: string,

: double,
: double,

: double,

: double,

: long,
: long

 strategy

 type
 symbol

 price

 size

 inputTickTS
 inputTS

)

: string,

: string,
: string,

: int,

: int,

: long,
: long

Tuples of the Indicator stream consist in a field strategy, indicating which strategy generated

the result, and the fields ratio, avgRatio, upperBand and lowerBand, containing the values of

the indicators described in section 1.2.1. The MarketOrder stream consists in the fields strategy,

again identifying the strategy that triggered the output, type, identifying the order as ‘BUY’ or

‘SELL’, and the fields symbol, price and size, which have the same meaning as in the input

stream StockTick, and are computed as specified in section 1.2.4.

Besides the payload, tuples from both streams include two timestamps: inputTickTS and

inputTS. Both are derived from the input event that triggered the emission of the output tuple

and represent respectively the tick occurrence time (simulation clock) and its arrival time (wall

clock). The former is used for checking the correctness of the results while the latter is used for

response time computation purposes.

1.4 Scaling

The scale factor (SF) of the benchmark affects the number of users, and consequently the

number of strategies executed in parallel as follows:

 Number of users: 5 SF

 Total number of strategies: 25 SF

Additionally, per every increment of ten in the scale factor, the input rate is incremented by

5,000 and the number of symbols is increased by 100 (this is to avoid too many similar

strategies over the same symbols and to allow to observe how the system scales with changes in

9

input rate and cardinality). The effect is as if a whole new market were now being monitored by

a new team of analysts.

EXAMPLES:

 For a scale factor of 8, there will be 40 users, each managing 5 strategies, on a total of 200

strategies running in parallel on the trading system.

 For a scale factor of 15, there will be 75 users, each managing 5 strategies, on a total of 375

strategies running in parallel on the trading system, from which 250 are over the first set of

100 symbols and 125 are over the second set of 100 symbols.

1.5 Measures

The performance of an event processing engine after a run of the Pairs benchmark is

summarized using the following formula
4
:

The intent of the metric above is to facilitate comparison among the several systems and

benchmark runs. When defining the metric, we tried to benefit systems that are able not only to

process high volumes of events, but also react quickly and scale well with respect to the number

of concurrent queries. Therefore, in order to excel in Pairs, an event processing system must be

able to:

i. Provide quick answers, and do that consistently;

ii. Handle increasingly larger loads (be it due to the number of simultaneous queries, input

rate, or both).

Thus, a system A that does not reply as quickly as another B might have a lower score even if it

manages to process more load. Also, if it replies quickly on average, but occasionally takes a

long time to reply, it will also be penalized. Similarly, if a system replies very quickly, but only

manages to achieve low scales factors, its score will hardly be outstanding.

Note that summarizing different performance aspects into a single number is always

controversial, since different users have different perceptions on the value of each dimension

depending on their requirements (e.g. for some, the best system is simply the one that replies

faster, while for others it is the one that handles more load). Therefore, besides indicating the

main metric, a Pairs report should include a number of other measures and information (e.g.,

number of strategies, input rate, average and maximum latency, latency histogram, etc.) to help

users better understand the performance of the system under test and judge whether it fits their

needs or not.

1.6 Execution Rules

Each run of Pairs starts with a short ramp-up phase (1 minute), during which the input rate

progressively increases from zero up to its peak value
5
. The ramp-up is then followed by a 30-

minute period where the input rates decreases until its basis value. After this period, the

measurement interval (MI) of the benchmark run starts. The MI has a total duration of 1 hour,

during which the input rate again increases to its peak value and then returns to its basis value.

4 An explanation of the term “load” and the rationale behind the metric can be found in Appendix A.
5 The purpose of the ramp-up is to give some time to the SUT for initializing its components and

performing any JIT optimization on its code before handling the high event volumes.

10

A final 30-minute period follows the MI, now with an increasing input rate. The several phases

of the benchmark run are illustrated in Figure 6 below:

Figure 6: A Pairs benchmark run

As mentioned before, the intent of this variation on the input rate is to observe how the

performance of the SUT evolves across different load levels. Event processing applications run

continuously for hours or even days without interruption, and as such it is very likely that the

conditions change during their execution. Gracefully responding to these load variations is

therefore a fundamental quality that CEP engines should possess.

In the standard configuration of Pairs, the amplitude of the load variation is 1.5 (i.e. during

peak, the input rate is 50% larger than the basis input rate). The shape of the event rate curve

aims at simulating what typically happens in capital markets, where higher volumes of

transactions are observed at market open and close, with sporadic peaks during the day.

Note that for performance measuring purposes only the measurement interval is considered, but

the SUT is required to produce correct answers for all the events received during the entire run.

1.7 Discussion: Is Pairs a good workload scenario?

There are a number of reasons why we believe the Pairs benchmark represents a good test case

for CEP platforms. First, the workload exercises several common features that appear repeatedly

in most event processing applications: it filters out ticks from securities which are not of

interest, aggregates events data over temporal and count-based windows, correlates price data

for interrelated securities, detects patterns from price movements, keeps track and updates

strategies’ state upon the occurrence of certain events, and performs lookups to determine orders

price and size. In addition, different from most benchmarks, which have a fixed set of queries

(e.g., [2]), the number of queries in Pairs increases with the system size. This is in conformance

with what happens in many real event processing applications and allows evaluating important

aspects like query scalability and resource sharing.

Other key benefits of Pairs are understandability and representativeness. The benchmark

mimics a niche of application where event processing platforms have perhaps been most

successful – capital markets. In fact, most products use simple financial use-cases to exemplify

the usage of their features and languages in their documentation, so in principle it should be

easy for anyone reasonably familiar with CEP to understand Pairs. Moreover, Pairs is loosely

based on a real use-case, and as such has a good chance to be representative of its domain of

application.

11

Finally, Pairs allows a great deal of customization. Users can control load intensity by setting

high-level workload parameters like input rate and number of simultaneous strategies, or by

altering scenario characteristics such as number of securities and configuration of the strategies.

While the results obtained from these “customized” runs cannot be compared to standard runs,

the ability to customize the workload enables users to exercise the systems in a manner closer to

their own real environment.

2 Implementation and Tools
The Pairs benchmark should be implemented and executed as illustrated in Figure 7 below:

Figure 7: Benchmark execution flow

1. User specifies workload parameters (or uses standard benchmark configuration);

2. A data generator application generates one or more data files and auxiliary files to be

used by the query generator;

3. A query generator creates the strategies into a neutral representation (e.g. xml file);

4. A vendor-specific translator parses the file generated by the query generator and

translates it into the query language used by the SUT;

5. Queries/rules are loaded into the SUT;

6. User starts performance run;

7. FINCoS loads generated data file(s) and submits it to the SUT;

8. SUT delivers results to FINCoS;

9. A validator verifies the correctness of the answers produced by the SUT

Note that this benchmark infrastructure also allows running tests with real stock market data.

For that, the user is required to inform the path for the input data and the list of known

correlations between the symbols in the data file (in essence, this means that the set of files

provided by the user must be the same as the ones generated by the data generator).

All the aforementioned tools are written in Java and require very little effort to be executed. The

Data Generator, Query Generator and Validator applications are specific to the Pairs

benchmark and can be downloaded from [3]. The FINCoS framework is benchmark-

12

independent and can be found at [4]. In the next sections we describe each tool and provide

instructions on how to use them.

2.1 Data Generator

The data generator application can be executed in either console or graphical mode. In the

console mode, the user specifies a couple of parameters in a configuration file and then executes

it passing the configuration file as argument:

java -jar "Data Generator.jar" "Pairs.config"

The data generation process starts right away. If no configuration file is specified, the data

generator starts in graphical mode:

java -jar "Data Generator.jar"

A form like the one depicted in Figure 8 will then appear.

Figure 8: The Data Generator tool (graphical mode).

As it can be seen, when executed in graphical mode, the data generator allows customizing a

number of workload parameters, including:

 Number of symbols N (default: 1

)

 Number of correlations K (default: 25% of the number of symbols, i.e., half of all the

symbols are liable to be monitored by a strategy)

 Number of strategies (default:)

 Input rate:

13

o Basis event input rate (default:

)

o Whether inter-arrival times are exponentially distributed (default) or constant;

o Whether input rate varies over time (default) or not;

o Peak event input rate (default:)

 Test duration (default: 2 hours)

To start data generation, the user clicks the “Generate” button. After executing, the data

generator produces the data file(s) and a file describing the number of strategies and the list of

correlations, which will then be used as input by the query generation tool.

2.2 Query Generator

The function of the Query Generator is to produce a neutral representation of the Pairs

workload that will be later translated into a vendor-specific implementation for the target CEP

engine. The output of the tool consists in an xml file containing the parameters of the strategies

to be executed by the SUT during the benchmark run, as illustrated in Figure 9:

<Strategies>

 <PairsStrategy

 alias="st_00001"

 availableFunds="1000000"

 symbo11="MCBEIV"

 symbo12="AYFBLW"

 periodLength="20"

 numPeriods="5"

 bandsMultiplier="1.25"

 stopLossPerc="0.3">

 </PairsStrategy>

</Strategies>

Figure 9: Snippet of the output produced by the Query Generator tool.

The number of such strategies varies according to the scale factor, as specified in section 1.4,

and the parameters of each strategy are generated as follows:

 alias: incrementally (“st_00001”, “st_00002”, etc.);

 availableFunds: fixed;

 symbol11 and symbol2: iterating over the list of correlations produced by the data

generator;

 periodLength: takes with equal likelihood one of the values {5, 10, 20, 30, 60};

 numPeriods: takes with equal likelihood one of the values {5, 6, 7, 8, 9, 10, 15, 20, 25,

30};

 bandsMultiplier: fixed;

 stopLossPerc: fixed;

2.3 Translator

The Translator is the only part of the Pairs benchmark infrastructure that is vendor-specific,

which means that a separate translator has to be developed for each target CEP engine. Note that

currently there is no standard way to express event processing logic: some products use

composition of graphical operators, others production rules, and some others offer continuous

query languages. Even in the case of the last two approaches, there is no agreed common syntax

or semantics.

For this reason, users implementing Pairs are free to use any feature or language construct

allowed by the target system. The ultimate implementation requirement is to produce the

14

expected answers (i.e. to pass in the validation test). We strongly discourage though the use of

user-defined functions or any other kind of integration with common programming languages,

as we believe that any CEP system should natively support the set of operations exercised by

Pairs, and the goal of the benchmark is to assess event processing engines rather than software

development platforms.

2.4 The FINCoS Framework

The FINCoS framework [4] is a set of benchmarking tools for load generation and performance

measuring of event processing platforms. The framework was designed to be portable across

different CEP products and test scenarios, so it can reused in different benchmarks and/or

performance studies.

In the case of Pairs, FINCoS is used to submit load to the system under test and receive the

answers from it. For that, the framework reads the data file produced by the Data Generator

tool, transforms the events on it into an appropriate representation, and send them to the target

CEP engine. On the opposite direction, FINCoS subscribes to the results at the CEP engine, and

when new tuples arrives, it stores them on disk for later validation.

Note that some previous configuration is required before running performance tests with

FINCoS. Detailed instructions on how to use the framework can be found at [4]. Also, a sample

test setup file for Pairs is provided in [3].

2.5 Validator

The purpose of the Validator application is to verify the correctness of the set of answers

produced by the SUT after a benchmark run. For that, it takes the input file created by the data

generator and the strategies file produced by the query generator to produce the expected output

for this particular configuration. Then, it reads the sink log file, generated by the FINCoS

framework, which contains the answers produced by the SUT, and compares it with the

expected output.

Like the Data Generator application, The Validator can be executed in either console or

graphical mode. Again, to execute in console mode, start the application passing a configuration

file as argument:

java -jar "Data Generator.jar" "Pairs.config"

The application will execute and then generate a report like the one shown in Figure 10. For

each output stream, the Validator reports:

 The number of expected answers (validator answers);

 The number of answers produced by the SUT (SUT answers);

 The number of correct answers;

 The number of answers that have been generated by the validator, but not by the SUT

(missing answers);

 The number of answers that have been generated by the SUT, but are not part of the set

of expected answers generated by the validator (undue answers) and

 The number of answers that were generated by both the SUT and the validator, but with

different values (wrong answers).

15

 Validation result: FAILED!

 - Indicators:

 # validator answers: 13884

 # SUT answers: 29878

 # correct answers: 13884

 # missing answers: 0

 # undue answers: 15994

 # wrong answers: 0

 - Orders:

 # validator answers: 1936

 # SUT answers: 3939

 # correct answers: 1884

 # missing answers: 0

 # undue answers: 2003

 # wrong answers: 52

Figure 10: Output of the Validator tool (console mode).

When validation fails (like in the sample report above), the graphical mode will probably be

useful to identify the cause, as it allows visualizing the set of incorrect answers (see Figure 11

and Figure 12). To execute in graphical mode, run the same command as before, but without

any argument:

java -jar "Validator.jar"

The following screen will then show up:

Figure 11: The Validator tool (graphical mode).

16

Again, the user specifies the paths for the files containing: the answers produced by the SUT,

the benchmark input data, and the parameters of the strategies. In alternative to the last two,

he/she can use the answers produced during the last validation (“use existing” option) to skip the

computation of the expected output – this shall make validation to finish much quicker, but only

applies if neither the input data nor the strategies file has changed since last run.

Validation starts by clicking the “validate” button. After finished, a report similar to the one of

the console mode is displayed, now with the option to visualize the entries, by clicking in the

icon on the right side of the results. A window like the one shown in Figure 12 will then appear.

Figure 12: Visualizing the wrong answers using the Validator tool (graphical mode).

2.6 Configuration File

As mentioned before, a configuration file is required in order to execute the Pairs benchmark

tools. A sample configuration file is included in the tools package. The file consists in a set of

properties as shown below:

Folder where the Data Generator tool saves its output.

dGenFolder=./data/

Folder where the Query Generator tool saves its output.

qGenFolder=./queries/

Folder where the Translator tool saves its output.

translatorFolder=./impl/Esper/

Folder where the Validator tool saves its output.

validFolder=./valid/

[Data Generator] Benchmark scale factor.

scaleFactor=2

[Data Generator] Split the data generated by the Datagen tool into one or

more files.

fileCount=1

[Validator] The file containing the answers produced by the SUT

sutFile=C:\\FINCoS\\log\\SF=2.log

[Validator] Indicates whether the input file must be processed (set to

false) or not (set to true)

skipInputValidation=true

17

The first four properties indicate where each of the four Pairs tools will save its output. The

scaleFactor property is used by the Data Generator to create input data under the

corresponding scale. The fileCount property can be used to tell the Data Generator to split its

generated data into a given number of files (for instance, for distributing load generation among

multiple drivers). The sutFile property is used by the Validator tool and indicates the path for

the file containing the answers produced by the SUT during the benchmark run. Finally, the

skipInputValidation property, also used by the Validator, allows to skip processing of input data

to produce the expected answers, by reusing the last validation result.

3 References
[1] Aldridge, Irene, High-frequency trading: a practical guide to algorithmic strategies and

trading. Wiley trading series. ISBN 978-0-470-56376-2.

[2] Arasu, A., Cherniack, M., Galvez, E.F., Maier, D., Maskey, A., Ryvkina, E.,

Stonebraker, M., and Tibbetts, R. 2004. Linear Road: A stream data management

benchmark. In Proceedings of the 30th International Conference on Very Large Data

Bases (Toronto, Canada, September 2004), 480-491.

[3] BiCEP project web site: http://bicep.dei.uc.pt

[4] FINCoS Framework: https://code.google.com/p/fincos/

[5] Mendes, M.R.N., Bizarro, P., Marques, P. 2009. A Performance Study of Event

Processing Systems. In Proceedings of the 1st TPC Technology Conference (Lyon,

France, August 2009), 221-236.

[6] Sachs, K., Kounev, S., Bacon, J., Buchmann, A.P. 2007. Workload Characterization of

the SPECjms2007 Benchmark. In Proceedings of the 4th European Performance

Engineering Workshop, (Berlin, Germany, September 2007), 228-244.

[7] White, S., Alves, A., Rorke, D. 2008. WebLogic event server: a lightweight, modular

application server for event processing. In Proceedings of the 2nd International

Conference on Distributed Event-Based Systems (Rome, Italy, July 2008), 193-200.

18

APPENDIX

A. The Pairs Metric
In this section we discuss the rationale behind the metric of Pairs, , whose purpose is to

facilitate comparison among different benchmark runs and systems. As mentioned in section

1.5, the metric takes into consideration both the amount of load posed by the benchmark

workload and the speed of the responses produced by the SUT. The metric has been chosen as

to be fair. More specifically, it had to present two properties:

i. If two systems manage to handle the same load (i.e., same scale factor), the ratio

between their scores must be exactly the ratio between their processing latency;

ii. If two systems present the same processing latency, the ratio between their scores must

be exactly the ratio between the load they handled.

Note, however, that due to the way the benchmark scales, the load to which the SUT is

submitted does not increase linearly with the scale factor. For instance, going from a scale factor

of 9 to 10 has the only effect of adding 25 more strategies over the same set of symbols. On the

other hand, going from a scale factor of 10 to 11 not only adds 25 more strategies, and over a

whole new set of symbols, but also increases the benchmark basis input rate by 5,000 events per

second. Table 1 below summarizes the differences in the workload parameters for the

aforementioned scale factors:

Table 1: Workload parameters for different scale factors

 Scale Factor

Parameters 9 10 11

Markets 1 1 2

Symbols 100 100 200

Strategies 225 250 275

Basis input rate 5,000 5,000 10,000

Clearly, the load level over the SUT is a function of both the input rate and the number of

strategies, or algebraically:

 (1)

Where represents the number of events per unit of time and W represents the amount of work

required to process each event (which is affected by the number of strategies).

However, doubling the input rate, as when going from a scale factor of 10 to 11, does not mean

that the system is twice more loaded because a great part of the incoming ticks is matched with

fewer strategies. For instance, for SF=11, half of the ticks are simply ignored as they are not

correlated, one quarter of them are matched with 10 strategies over the first market, and the

other quarter is matched with only one strategy over the second market. So, even though the

input rate doubled, ¾ of the incoming events are actually ignored or have a much shorter

processing path. In formula (1), this means that doubled, but the average value of W

decreased substantially.

We account for that reduction, by splitting the processing of every incoming event into two

separate phases and assigning weights to them
6
:

6 We assign a small weight for the first phase as in essence it involves only String comparison

19

 (2)

i. filtering (weight: 1)

ii. passing forward in the execution path of the strategies (weight: 100)

In both phases, the amount of work depends on the number of strategies involved:

 (3)

 (4)

Where is the total number of strategies in execution and is the number of strategies

that are actually affected by the incoming tick. As mentioned before, is straightforwardly

derived from the scale factor as follows:

 (5)

On the other hand, the number of strategies that are actually executed depends on the

incoming tick. In particular, one of three things can happen:

i. The tick is simply ignored, as it does not belong to any known correlation;

ii. The tick is matched with exactly 10 strategies, if it belongs to one of the first M-1

markets (for M > 1);

iii. The tick is matched with 1 up to 9 strategies, if it belongs to the last market M.

The average value of is then given by:

(6)

Where is the probability associated with each of the three situations above, and is the

number of strategies executed in each case. Specifically:

i.

ii.

iii.

Which gives:

(7)

And:

(8)

Since :

 (9)

Eliminating the constant, and since

 , we have the final value for the load, expressed as

a function of the scale factor:

(10)

20

The metric of Pairs is then expressed in terms of the scale factor as:

