
A Performance Study of Event Processing Systems

Marcelo R.N. Mendes, Pedro Bizarro, Paulo Marques

CISUC, University of Coimbra,

Dep. Eng. Informática – Pólo II, 3030-290, Coimbra, Portugal

{mnunes, bizarro, pmarques}@dei.uc.pt

Abstract. Event processing engines are used in diverse mission-critical scena-

rios such as fraud detection, traffic monitoring, or intensive care units. Howev-

er, these scenarios have very different operational requirements in terms of,

e.g., types of events, queries/patterns complexity, throughput, latency and num-

ber of sources and sinks. What are the performance bottlenecks? Will perfor-

mance degrade gracefully with increasing loads? In this paper we make a first

attempt to answer these questions by running several micro-benchmarks on

three different engines, while we vary query parameters like window size, win-

dow expiration type, predicate selectivity, and data values. We also perform

some experiments to assess engines scalability with respect to number of que-

ries and propose ways for evaluating their ability in adapting to changes in load

conditions. Lastly, we show that similar queries have widely different perfor-

mances on the same or different engines and that no engine dominates the other

two in all scenarios.

Keywords: Benchmarking, Complex Event Processing, Micro-benchmarks.

1 Introduction

Complex Event Processing (CEP)1 has emerged as a new paradigm to monitor and

react to continuously arriving events in (soft-)real time. The wide applicability of

event processing has drawn increased attention both from academia and industry,

giving rise to many research projects [1, 2, 7, 16] and commercial products. CEP has

been used for several purposes, including fraud detection, stock trading, supply-chain

monitoring, network management, traffic monitoring or intensive care units control.

Most scenarios where event engines are being deployed are mission-critical situa-

tions with demanding performance requirements (e.g., high throughput and/or low

latency). Interestingly, the range of scenarios is very broad and presents very different

operational requirements in terms of throughput, response time, type of events, pat-

terns, number of sources, number of sinks, scalability, and more. It is unclear what

type of requirements demand more from engines, what happens when parameters are

varied, or if performance degrades gracefully. To address the lack of event processing

performance information, in this paper we make the following contributions:

1 We use the terms “complex event processing”, "CEP" and "event processing" interchangea-

bly. Likewise, we also use the terms "CEP system" and "CEP engine" interchangeably.

i. We present a number of micro-benchmarks to stress fundamental operations

such as selection, projection, aggregation, join, pattern detection, and win-

dowing (summarized in Section 3).

ii. We perform an extensive experimental evaluation of three different CEP

products (two commercial, one open-source), with varying combinations of

window type, size, and expiration mode, join and predicate selectivity, tuple

width, incoming throughput, reaction to bursts and query sharing (Section 4).

2 Event Processing Overview

Like Data Stream Management Systems (DSMS) [1, 2, 16], CEP systems are de-

signed to handle real time data that arrive constantly in the form of event streams.

CEP queries are continuous in the sense that they are registered once and then run

indefinitely, returning updated results as new events arrive. Due to low-latency re-

quirements, CEP engines manipulate events in main memory rather than in secondary

storage media. Since it is not possible to keep all events in memory, CEP engines use

moving windows to keep only a subset (typically the most recent part) of the event

streams in memory. In addition to these features shared with DSMS, CEP engines

also provide the ability to define reactive rules that fire upon detection of specific

patterns. Ideally, CEP engines should be able to continuously adapt their execution to

cope with variations (e.g., in arrival rate or in data distributions) and should be able to

scale by sharing computation among similar queries.

Section 2.1 lists the operations typically performed by CEP systems. We use these

operations as the basis of the micro-benchmarks of Section 3.

2.1 CEP Characterization

A few event processing uses cases have been recently published [6], but it is still

unclear which of them, if any, is representative of the field. There is, however, a core

set of operations used in most scenarios and available, in one form or another, in all

products:

 Windowing; Filtering (Selection/Projection);

 Transformation; Sorting/Ranking;

 Aggregation/Grouping; Correlation/Enrichment (Join);

 Merging (Union); Pattern Detection.

The performance of a CEP engine depends on: i) the algorithms implementing

these basic operations; ii) parameters such as window type and size, and predicate

selectivity; and iii) external parameters such as available resources, incoming data,

and number and type of queries and rules.

2.2 Window Policies

Moving windows are fundamental structures in CEP engines, being used in many

types of queries. Windows with different properties produce different results and have

radically different performance behaviors. Window policies determine when events

are inserted and removed (expired) from moving windows and when to output com-

putations. Three aspects define a policy [12]:

i. Window type: determines how the window is defined. Physical or time-

based windows are defined in terms of time intervals. Logical, count-based,

or tuple-based are defined in terms of number of tuples 2.

ii. Expiration mode: determines how the window endpoints change and which

tuples are expired from the window. In sliding windows endpoints move to-

gether and events continuously expire with new events or passing time (e.g.,

“last 30 seconds”). In jumping or tumbling windows the head endpoint

moves continuously while the tail endpoint moves (jumps) only sporadically

(e.g. “current month”). The infrequent jump of the tail endpoint of jumping

windows is said to close or reset the window, expiring all tuples at once. In a

landmark window one endpoint is moving, the other is fixed, and events do

not expire (e.g., “since 01-01-2000”).

iii. Update interval (evaluation mode): determines when to output results:

every time a new event arrives or expires, only when the window closes (i.e.,

reaches its maximum capacity/age), or periodically at selected intervals.

In general, commercial engines do not support all the combinations above.

3 Dataset and Micro-Benchmarks

In this section we describe the dataset used in our tests and summarize the micro-

benchmarks in Table 2 (a detailed description of the queries appears in Section 4).

We use a synthetic dataset because it allows exploring the parameter and performance

space more freely than any single real dataset. The dataset schema is based on sample

schemas available at the Stream Query Repository (SQR) [21]. In most application

domains of SQR, event records consist in: i) an identifier for the entities in the do-

main (e.g., stock symbols in trading examples); ii) a set of domain-specific properties

(e.g., “price”, “speed”, or “temperature”), typically represented as floating point num-

bers; and iii) the time when the event happened or was registered.

Based on these observations, we define the generic dataset schema of Table 1. The

ID field identifies the entity being reported in the stream. The number of different

entities, MAX_ID (ranges from 10 to 5.000.000), can greatly affect performance in

joins, pattern matching queries, and aggregations. Tuple width is varied with the

number of attributes Ai (from 1 to 125). The TS timestamp field is expressed in milli-

seconds and assigned by the load generator at runtime.

2 There are also semantic windows whose contents depend on some property of the data (e.g.,

all events between events “login” and “logout”). We do not consider semantic windows in

our study as none of the engines we tested implements them.

Table 1. Schema of the dataset used.

Field Type Domain

ID int Equiprobable numbers in the range (1, MAX_ID)

A1...AN double Random values following a uniform distribution U(1,100)

TS long Timestamp.

Table 2. Summary of micro-benchmarks.

4 Tests Specification and Results

In this section we discuss the results obtained after running the micro-benchmarks

on three CEP engines. We emphasize that it is not our intention to provide an in-depth

comparison of existing CEP engines, but rather to give a first insight into the perfor-

mance of current products as a way to identify bottlenecks and opportunities for im-

provement. We focus on analyzing general behavior and performance trends of the

engines (e.g. variations with respect to window size, tuple width, or selectivity).

4.1 Tests Setup

The tests were performed on a server with two Intel Xeon E5420 (12M Cache, 2.50

GHz, 1333 MHz FSB) Quad-Core processors (a total of 8 cores), 16 GB of RAM, and

4 SATA-300 disks, running Windows 2008 x64 Datacenter Edition, SP2.

Query Factors under analysis Metrics

Selection and

Projection

 Selectivity: [1%, 5%, 25%, 50%]

 # attributes: [5, 10, 25, 50, 125]
Throughput

Aggregations

and Windows

 Window size (tuples): 500 to 500K

 Window expiration: [sliding, jumping]

 Aggregations: [SUM, MAX, STDEV]

Throughput

Joins

 Input Source: [stream, window, in-

 memory table, external table]

 Input Size (# events): 500 to 100M

 Join Selectivity: 0.01 to 10

Throughput

Pattern

Detection

 Window Size (secs): 10 to 600

 MAX_ID: [100, 1k, 10k, 100k]
 Predicate Selectivity: 0.1% to 10%

Throughput

Large Time-

Based Windows

 Injection Rate (events/sec): 500 to100K

 Window Size: 10 minutes to 12 hours

Throughput

Memory consumption

Adaptability (See Section 4.8.)

Maximum latency

Latency degradation ratio

Recovery Time

Post-peak latency variation ratio

Multiple

queries

 Number of Queries: [1, 4, 16, 64]

 Window definition (size: 400k to 500k)

Throughput

Memory consumption

 We ran our queries on three CEP engines, two of which are developer’s editions of

commercial products and the other is the open-source Esper [11]. Due to licensing

restrictions, we are not allowed to reveal the names of the commercial products, and

will call engines henceforth as “X”, “Y”, and “Z”. We tried multiple combinations of

configuration parameters to tune each engine to its maximum performance (e.g.,

enabling buffering at client side, or using different event formats and SDK versions).

Figure 1 shows the components

involved in the performance tests.

Two slightly different architec-

tures were employed. In either

case, the load generation compo-

nent communicates with an inter-

mediary process called Adapter

via plain socket, and CSV text

messages. The Adapter then con-

verts these messages into the

native format of CEP engines and

transmits them using their respec-

tive application programming

interfaces (API). The difference between the two architectures shown in Figure 1 is

that engines X and Z are standalone applications (architecture 1), while engine Y

consists in a .jar file that is embedded into an existing application (architecture 2).

This means that X and Z, receive/send events/results using inter-process communica-

tion, while Y uses lower-latency local method calls.

The input streams data were generated and submitted using the FINCoS framework

[15], a set of benchmarking tools we have developed for assessing performance of

CEP engines. Both the load generation components and the event processing engines

under test ran in a single machine to eliminate network latencies and jitter. CPU’s

affinity was set to minimize interferences between the load generator, adapters and

CEP engines. For all tests, unless otherwise stated, CEP engines ran in a single dedi-

cated CPU core3, while the load generator and Adapter ran in the remaining ones.

4.2 Methodology

Tests consisted in running a single continuous query at the CEP engine (except for

the multiple-query tests of Section 4.9). They began with an initial 1 minute warm-up

phase, during which the load injection rate increased linearly from 1 event per second

to a pre-determined maximum throughput4. After warm-up, the tests proceeded for at

least 10 minutes in steady state with the load generation and injection rate fixed at the

maximum throughput. Tests requiring more time to achieve steady state (e.g. using

long time-based windows) had a greater duration. All the measures reported represent

averages of at least two performance runs after the system reaches a steady state.

3 We verified that two of the engines did not automatically benefit from having more cores

available. For the third engine, the version we tested was limited to use only one CPU core.
4 The maximum injection rate was determined by running successive tests with increasing

throughputs until CPU utilization was maximized or some other bottleneck was reached.

Figure 1. Architecture of evaluation setup

4.3 Test 1: Selection and Projection Filters

This micro-benchmark consists in two queries that filter rows (selection) or col-

umns (projection) using query Q1 of Figure 2 (written in CQL [16]):

Q1: SELECT ID, A1,…,Am, TS

 FROM stream1

 WHERE ID <= K

Figure 2. Filtering query

The two data reduction queries vary the values of parameters K, N, and m (results in

Figure 3). K is used to force desired selectivity, N is the number of input attributes and

m is the number of projected output attributes (m≤N):

i. Row selection: varies predicate selectivity from

1% to 50%; N=m=5;

ii. Column projection: varies number of input

attributes N from 5 to 125; m is fixed at 1 and

row selectivity at 100%.

The throughputs achieved in this test series were very

high, in millions of events per second. As expected,

more selective predicates allow higher throughputs. The

acute drop in performance in the projection query as the

number of input attributes increases shows that tuple-

width greatly affects performance. Notice that in both

tests, Engine X was not fully utilizing the available

resources (utilization of its CPU was between 50% and

90%) when its client API adapter became the bottle-

neck. Dedicating more CPU-cores to the adapter (up to

7) did not solve this issue.

4.4 Test 2: Aggregation and Window Policy

The second micro-benchmark (query Q2 in Figure 4) evaluates aggregations over

different tuple-window configurations. (Time-based windows are tested in sections

4.6 and 4.7.)

Q2: SELECT ID, f(A1)

 FROM stream1 [ROWS R Slide S]

 GROUP BY ID

Figure 4. Aggregation Query, written in CQL [21].

We vary window size (parameter R from 500 to 500K), window type (parameter

S=1 implies sliding window and parameter S=R implies jumping window), and ag-

gregation function (parameter f=MAX, AVG, STDDEV, MEDIAN). Note that some

functions can be computed at fixed cost (STDDEV, AVG) while others become more

expensive as the window gets larger (MAX on sliding windows, or MEDIAN). Regard-

Figure 3. Filtering tests:

Selection and Projection.

ing expiration mode, we expected sliding windows to be more expensive than jump-

ing for two reasons. First, sliding windows expire tuples one-by-one while jumping

windows expire them in batches. Second, sliding windows might need to keep more

in-memory state (to deal with tuple-by-tuple expirations) while jumping windows

may keep only counters and small summary data. Results are summarized in Figure 5.

 (a) (b) (c)

Figure 5. Aggregations Tests: varying windows sizes and policies on (a) sliding windows and

on (b) jumping windows. Graph (c) is the CPU utilization of engine X for jumping windows.

Oddly, engine X had a worse performance with

the jumping expiration mode than with sliding one.

The cause seems to be inefficient batch-expiration

of the jumping window tuples as shown by the

peak CPU utilization coinciding with the periodic

batch-expiration (Figure 5c). On engine Z, the

performance difference between the two expiration

modes was surprising: very high throughputs with

jumping windows (the best of the three engines at

around 550K tuples/second) but very low through-

puts with sliding windows (the worse of the three,

reaching only 50 tuples/second for windows of size

500K). For engine Y, results appears at first to meet

our expectations, but in fact these two test cases are not directly comparable since Y’s

sliding windows output updated results for every tuple while its jumping windows

update results only on window reset. Indeed, jumping windows showed a better per-

formance not due to an implementation that benefit from the characteristics of this

expiration mode, but rather, to a reduced evaluation/output frequency – examining Y’s

open-source code we observed that the MAX aggregation is always computed by keep-

ing the events of the window in a sorted structure; while this is a reasonable ap-

proach for sliding windows, it is inefficient for jumping windows, where MAX could be

computed at constant cost. Except for the aforementioned issue regarding computa-

tion of MAX on engine Y, varying the aggregation functions between AVG, STDEV

and MAX generally had minor effects on performance of all engines. In contrast, all

engines achieved considerably lower throughputs in the tests with the MEDIAN func-

tion. The MEDIAN function also showed to be more sensitive to window size than the

other functions (e.g. see Figure 6).

Figure 6. Median vs. Sum

aggregates on engine X.

4.5 Test 3: Joins

This micro-benchmark evaluates join performance of CEP engines. We define

three test series, each with different data sources and factors under analysis:

J1. Window-to-window join – joins two windows that are constantly being up-

dated by event arrivals in the corresponding input streams;

J2. Stream-to-in-memory-table – simulates the situation where the content of an

input stream must be enriched with static data stored as an in-memory table;

J3. Stream-to-DBMS-relation – table stored in an external database;

J1: Window-to-window

The window-to-window join query is the following:

Q3: SELECT * FROM stream1 [ROWS S] AS S1,

 stream2 [ROWS S] AS S2

 WHERE S1.ID = S2.ID

Figure 7. Window-to-window Equi-Join Query

J1 series is comprised of three different tests as described below:

J1-1 Varying window size and join selectivity: parameter S varies from 500 to

500k. MAX_ID is held constant at 50k (i.e., the join is more selective for

smaller window sizes);

J1-2 Varying window size and keeping join selectivity: parameters S and MAX_ID

take the same values, from 500, to 500k, which ensures a fixed 100% join se-

lectivity (each event finds a single match on the other window);

J1-3 Varying join selectivity and keeping window size fixed: MAX_ID takes the

values 5k, 50k, 500k, and 5M while parameter S is held at 50k (each event

finds, on average, 10, 1, 0.1 and 0.01 matching events on the other window).

Figure 8 below shows the results for this test series.

Figure 8. Tests Join: Window-to-window.

In J1-1, the acute drop in throughput was expected (due to increases in join input and

selectivity) although the performance of engine Z degraded much faster than the per-

formance of other engines. (Recall that engine Z showed performance issues on pre-

vious tests with aggregations over sliding windows, which seems to indicate that it

has some problems with this expiration mode.)

Tests J1-2 and J1-3 reveal that engine X is more sensitive to window size while en-

gine Y performs very well when join selectivity is low, but degrades more quickly

when it gets close to or exceeds 1. For engine Z, we ran a modified version of J1-3,

with a smaller window (size 500, not shown) in order to minimize the cost of window

maintenance but there were no noticeable performance differences when varying the

join selectivity, indicating again that sliding windows are not efficiently handled by Z.

J2/J3: Stream-to-in-memory-table and Stream-to-DB-relation

The queries of tests J2 and J3 have the following format:

Q4: SELECT * FROM stream1 AS S,

 table1 AS T

 WHERE S.ID = T.ID

Figure 9. Stream-to-table Join Query

Figure 10 shows the corresponding results. In

both tests a stream “S” with 4 fields is joined with a

static table with 10 fields. In J2 the CEP engine is

responsible for maintaining the table in main memo-

ry and for performing the join. In J3 the table is

stored in an external database, which becomes re-

sponsible for the join (every new event in stream S

fires a parameterized query to the DBMS5). The

number of records in the table ranged from 1k to

10M (in-memory) and from 1k to 100M (DB); join

selectivity is always 100% (every event in the

stream is matched against one and only one record

in the table).

In series J2, engine Y could not complete the test

with 10M because it ran out of memory (prolonged

garbage collections made it unresponsive). It is also

interesting to notice how Z had a better join perfor-

mance when operating over a table rather than over

sliding windows (see J1-2, in Figure 8). In J3, two

facts are worth mentioning: first, neither the CEP

engines nor the DBMS were in their processing lim-

its; the bottleneck was primarily the communication

between these two components. Second, the perfor-

mance was virtually unaffected from 1k to 1M as the DBMS was able to buffer the

entire table into main memory. From this point on, the presence of IO calls, signifi-

cantly lowered the query throughput.

5 We tested both with MS-SQL Server™ 2005 and Oracle™ 11g, and the results were similar.

Figure 10. Tests Join be-

tween stream and table (J2)

in-memory or (J3) in external

database.

4.6 Test 4: Pattern Matching and Negative Pattern Matching

We used query Q5 and Q5n below to test pattern matching. Q5 searches for in-

stances of two events with the same ID in a time-based window of size interval,

where the “A1” attribute of the second event is above some constant K. Q5n searches

for sequences of an event not followed by a corresponding event within an interval.

Q5: PATTERN SEQ(A a1, A a2) Q5n: PATTERN SEQ(A a1, ~(A a2))

 WHERE a1.id = a2.id AND WHERE a1.id = a2.id AND

 a2.A1 > K a2.A1 > K

 WITHIN interval WITHIN interval

Figure 11. Sample Pattern Matching Queries (expressed using the SASE+ language [23])

The purpose of the “a2.A1>K” predicate is to verify that CEP engines indeed

benefit of predicates in pattern detection by pushing them earlier in query plan con-

struction. This micro-benchmark exercises three factors:

i. Varying Window Size: parameter interval ranges from 10 to 600 seconds.

MAX_ID is held constant at 10k and K ensures a selectivity of 0.1%;

ii. Varying Cardinality of Attribute ID: MAX_ID ranges from 100 to 100k. in-

terval was held constant at 1 minute and K ensures selectivity of 0.1%;

iii. Varying Predicate selectivity: the predicate selectivity varied from 0.1% to

10%, while interval was held at 1 minute and MAX_ID at 10k.

Figure 12 show the results of Q5. In the first experiment, all the engines had a very

similar decrease in throughput as interval got larger. We could not determine the

performance of engine Z for windows of sizes above 5 minutes because it consumed

all available memory before tests could reach steady state (the edition we tested was

limited to address at most 1.5GB of memory). As expected, increasing the cardinality

of the correlation attribute ID decreases query cost, since less tuples pairs will have

matching IDs. Similarly, more selective predicates (lower percentages) yield better

performance as less tuples are considered as potential patterns matches.

Q5n showed to be less expensive than Q5. This difference has to do with the

consumption mode [10] used in these tests (all-to-all): in the case of negative patterns

a single occurrence of an event “a2” eliminates many potential matches. (results of

tests with negative pattern have been omitted due to space constraints).

 (a) (b) (c)

Figure 12. Pattern matching Tests varying (a) window size; (b) #IDs; (c) predicate selectivity.

4.7 Test 5: Large Time-Based Windows

Large time-based windows over high throughout sources may quickly drain system

resources if all incoming events need to be retained. For example, one hour of 20-

byte-size events on a 50k event/sec stream represents around 3.4 GB. Fortunately,

certain applications require results to be updated only periodically, say every second,

rather than for every new event (see Q6 bellow). In that case, for distributive or alge-

braic functions [14], Q6 can be rewritten in the equivalent query Q7.

Q6: SELECT AVG(A1)

 FROM A [RANGE 1 HOUR]

 OUTPUT EVERY 1 SECOND;

Q7: SELECT SUM(s1)/SUM(c1)

 FROM (SELECT SUM(A1) AS s1, COUNT(A1) AS c1

 FROM A[RANGE 1 SECOND]

 OUTPUT EVERY 1 SECOND

) [RANGE 1 HOUR];

Figure 13. Two versions of aggregation query over time-based window with controlled output

Query Q7 computes 1-second aggregates on the inner query and 1-hour aggregates

over the 1-second aggregates with the outer query. The space requirements of Q7 are:

Inner window: (50000 events/second * 20bytes/event) * 1second = 977KB +

Outer window: (1 tuple/second * 20bytes/tuple) * 3600 seconds = 70KB

This micro-benchmark runs Q6 and Q7 for large different window sizes and vary-

ing input rates. The goal is to verify if: i) Q6 is internally transformed into Q7; and ii)

if not, to quantify the benefits of such transformation. The results of Q6 and Q7 for a

10-minute window appear in Table 3.

Table 3. Memory consumption (in MB) of CEP Engines for Q6 and Q7 (10-minute window)

 Input Rate

Engine/Query 500 5,000 50,000 100,000

X, Q6 187 1,553 Out-of-memory Out-of-memory

X, Q7 39 40 64 98

Y, Q6 455 3,173 Out-of-memory Out-of-memory

Y, Q7 139 141 1,610 1,652

Z, Q6 56 64 56 55

Z, Q7 69 68 77 91

Observe that in engines X and Y query Q7 indeed reduced memory consumption

when compared to Q6. In fact, Q6 showed a near-linear growth with respect to input

rate and as such, engines X and Y exhausted memory (more than 13GB) for input

rates above 50k events/sec even on small 10-minute windows. Engine Z had its mem-

ory consumption virtually unaffected by the input rate and almost identical in both

query versions; these results made us suspect at first that Z could be the only engine

applying the query transformation automatically.

We then ran a second series of experiments with much larger windows. Input rate

was kept at 100k events per second and window size was progressively increased up

to 12 hours. The durations of these tests were always 1.5 times the window size. For

engines X and Y, we ran the tests with Q7. For engine Z we tested both versions.

Table 4 summarizes the results.

Table 4: CEP Engines’ memory consumption for very large time-based windows (MB)

 Window Size

Engine/Query 20 min 1 hr. 2 hrs. 6 hrs. 12 hrs.

X, Q7 114 128 141 146 147

Y, Q7 5,275 5,303 5,232 5,362 5,279

Z, Q7 70 73 55 58 52

Z, Q6 63 58 46 48 48

This new experiment exposed a behavior of engine Z not revealed in previous tests.

While in the first experiments Z was able to keep memory consumption roughly unaf-

fected by the number of events in the window, in this second series of tests, the CPU

utilization and consequently maximum throughput were severely affected by the win-

dow size. As shown in Figure 14, Q6 had

a drastic drop in maximum throughput as

window size was increased, while Q7

showed a very steady throughput curve. It

is worthy to point out that in the tests

with Q6 CPU was pushed to its maxi-

mum (for windows of 20 min and

beyond), while with Q7 CPU utilization

stayed always around 1%. These numbers

indicate that Z also does not perform the

transformation mentioned above, but

rather has an alternative implementation

which sacrifices maximum throughput to

keep memory consumption controlled.

4.8 Test 6: Adaptability to Bursts

The objective of this micro-benchmark is to verify how fast and efficiently the

CEP engines adapt to changes in the load conditions. Although many factors may

cause variations in the execution of continuous queries, here we focus solely on input

rate. The tests of this series consist in:

i. An 1-minute warm-up phase during which the injection rate is progressively

increased until a maximum value λ that makes CPU utilization around 75%;

ii. A 5-minute steady phase during which the injection rate is kept fixed at λ;

Figure 14 – Q6 and Q7 aggregations

over large time-windows (engine Z).

iii. A 10-second “peak” phase during which the injection rate is increased 50%

(to 1.5λ), making the system temporarily overloaded;

iv. A 5-minute “recovery” phase in which the injection rate is again fixed at λ;

The query used is Q2, shown in Figure 4. To characterize the adaptability of CEP

systems we define the following metrics:

 Maximum peak latency (Max_RTpeak): maximum latency either during or af-

ter the injection of the peak load;

 Peak latency degradation ratio (RT_Degradationpeak): 99.9th-percentile laten-

cy of peak phase with respect to 99.9th-percentile latency of steady phase:
99.9th_RTpeak/99.9th_RTsteady

In other words, what is the increase in latency caused by the peak?

 Recovery Time (Δτrecovery):

τrecovery-τpeak

where τrecovery represents the timestamp of the first output event after peak in-

jection whose latency is less than or equal the average latency of the steady

phase and τpeak is the timestamp of the last input event of the peak phase.

That is, how long does it take for to return to the same latency levels?

 Post-peak latency variation ratio: Average latency after recovery divided by

the average latency during steady phase:
RTafter_ecovery/RTsteady_phase

That is, what is the state of the system after it recovers from the peak?

Discussion: Blocking/Non-Blocking API and Latency Measurement

Recall from Figure 1 that events are sent to engines through API calls. On engine

X, those API calls are non-blocking while on engines Y and Z they are blocking. In

practice this means that X continues queuing incoming events even if overload while

Y and Z prevent clients from submitting events at a higher rate than that they can

process. As shown in Figure 15, there are

multiple ways of computing latency. In order

to properly measure latency for blocking

calls, it is necessary to employ the “creation

time” of input events instead of their “send

time” – formula (3) in Figure 15. This for-

mula allows accounting for the delays intro-

duced by the blocking mechanism of the

client APIs, which otherwise would pass

unnoticed if we employed the moment im-

mediately before sending the event.

Results

Table 5 and Figure 16 show the results of the adaptability test. Engine X, which

adopts a non-blocking posture in the communication with clients, took much longer to

recover from the peak and had a higher maximum latency than the two blocking en-

gines, Y and Z. Nonetheless, after recovery, all engines returned to virtually the same

latency level as that observed before the peak.

Figure 15: Latency Measurement.

Table 5. Results for Adaptability Tests

 Engine

Metric X Y Z

Max_RTpeak (ms) 4.725,0 1.262,0 1.483,0

RT_Degradationpeak 82,8 57,4 5,9

Δτrecovery (ms) 43.039,0 1.308,0 1.544,0

RT_Variationpost 1,0 0,9 1,0

Figure 16. Adaptability Test: Scatter plot of latency before, during and after the peak.

4.9 Test 7: Multiple Queries (Plan Sharing)

The objective of this micro-benchmark is to analyze how the CEP engines scale with

respect to the number of simultaneous similar queries. The query used in this experi-

ment is a window-to-window join similar to Q3 (Figure 7). We tested two variations:

 Test 1: Identical queries. In this test we

focus on computation sharing and the main

metric is hence throughput. Window size

is fixed in 1000 rows. To keep output rate

fixed (1 output per input event), all queries

have a predicate whose selectivity in-

creases as we add more queries;

 Test 2: Similar queries with different

window sizes. In this test we focus on

memory sharing, so windows are large

enough to observe differences when we in-

crease the number of queries (in the range

[400k-500k events]) and the injection rate

is low so that CPU does not become a bot-

tleneck;

The results of these two tests are shown in Fig-

ure 17. Engine X is the only one to implement

some kind of query plan sharing: in the first test its throughput remained unaffected

when the number of queries was increased. However, in the second test, in which

queries were similar but different, it was not able share resources. Results also indi-

cate that engines Y and Z do not implement query plan sharing. In fact, Y and Z could

Figure 17: Multiple Queries Tests

not finish some tests of the second series: Y ran out of memory for 64 queries and Z

become unresponsive while the window was being filled.

5 Related Work

Up to now, little previous work focused on the performance evaluation of event

processing systems. White et al. [22] present a performance study which shows the

latencies of a commercial CEP product while handling large volumes of events.

Dekkers [8] carried out some tests for evaluating pattern detection performance in two

open-source CEP engines. None of them characterize how query options such as

window size and policy, or selectivity affects performance, nor covered more than

one or two query type(s) or CEP product(s).

Some benchmarks have been proposed in areas related to CEP such as the BEAST

benchmark [5] for active databases, or the Linear Road [3] or NEXMark [17] bench-

marks for data stream management systems. However, these benchmarks measure

only steady state performance for a fixed number of queries, and do not consider

issues such as adaptability and query plan sharing. SPECjms2007 [18] is a benchmark

produced and maintained by the Standard Performance Evaluation Corporation

(SPEC) aimed at evaluating the performance and scalability of JMS-based messaging

middlewares. SPECjms2007 thus focus on the communication side of event-driven

systems rather than on query processing, which distinguishes it from our work.

6 Conclusions and Future Work

In this paper we presented a performance study of event processing systems. We

proposed a series of queries to exercise factors such as window size and policy, selec-

tivity, and event dimensionality and then carried out experimental evaluations on

three CEP engines. The tests confirmed that very high throughputs can be achieved by

CEP engines when performing simple operations such as filtering. In these cases the

communication channel – in our tests, the client API – tends to be the bottleneck. We

also observed that window expiration mode had a significant impact on the cost of

queries. In fact, for one of the tested engines the difference in performance between

jumping and sliding windows in one test was about 4 orders of magnitude. With re-

spect to joins, tests revealed that accessing data stored in databases can significantly

lower the throughput of a system. Pre-loading static data into CEP engine offers good

performance and may thus solve this issue, but this approach is feasible only when

data do not change often and fit in main memory. The tested engines had disparate

adaptability characteristics. We observed that the approach used to receive events

from clients – either blocking or non-blocking – plays a fundamental role on that

aspect, although further investigation is still required to fully understand this topic

(e.g., testing bursts of variable amplitudes and durations or having changes in other

parameters such as data distributions). Finally, the tests with multiple queries showed

that plan sharing happened only in one CEP engine and only for identical queries (we

still plan to broaden the investigation of this topic by incorporating tests with other

classes of queries). It was also quite surprising and disappointing to realize that CEP

engines were not able to automatically benefit from the multi-core hardware used in

our tests. In general terms, we concluded that no CEP engine showed to be superior in

all test scenarios, and that there is still room for performance improvements.

References

1. Abadi, D. J., et al.: Aurora. A New Model and Architecture for Data Stream Management.

VLDB Journal, Vol. 12, August 2003, 120-139.

2. Arasu, A., et al.: STREAM: The Stanford Stream Data Manager. In Proc. SIGMOD 2003.

3. Arasu, A., et al. Linear Road: A Stream Data Management Benchmark. In Proc. of VLDB

2004.

4. Babcock, B., et al. Models and Issues in Data Stream Systems. In Proc. of SIGMOD 2002.

5. Berndtsson M., et al. Performance Evaluation of Object-Oriented Active Database Man-

agement Systems Using the BEAST Benchmark. In Theory and Practice of Object Sys-

tems, v.4 n.3, p.135-149, 1998

6. Bizarro, P., et al. Event Processing Use Cases. Tutorial, DEBS 2009, Nashville USA.

7. Chandrasekaran, S., et al. TelegraphCQ: Continuous dataflow processing for an uncertain

world. In Proc. of CIDR 2003.

8. Dekkers, P. Master Thesis Computer Science. Complex Event Processing. Radboud Uni-

versity Nijmegen, Thesis number 574, October 2007.

9. DSAL Real-Time Event Processing Benchmark,

http://www.datastreamanalysis.com/images/Real-Time%20EP%20Benchmark.pdf

10. Chakravarthy, S, Mishra, D. Snoop: An Expressive Event Specification Language for

Active Databases. Data Knowl. Eng. (DKE) 14(1):1-26 (1994)

11. Esper, http://esper.codehaus.org/

12. Golab, L., Özsu, M. T.: Issues in data stream management. SIGMOD Record 32(2): 5-14

(2003).

13. Gray, J. (editor). The Benchmark Handbook for Database and Transaction Processing

Systems, 2nd Edition. Morgan Kaufmann, 1993.

14. Gray, J, et al. Data Cube: A Relational Aggregation Operator Generalizing Group-by,

Cross-Tab, and Sub Totals. Data Min. Knowl. Discov. 1(1): 29-53 (1997).

15. Mendes, M.R.N., Bizarro, P., Marques, P. A Framework for Performance Evaluation of

Complex Event Processing Systems. In Proc. of DEBS 2008.

16. Motwani, R., et al. Query Processing, Resource Management, and Approximation in a

Data Stream Management System. In Proc. of CIDR 2003.

17. NEXMark Benchmark. http://datalab.cs.pdx.edu/niagara/NEXMark/

18. Sachs K., et. Al.: Workload Characterization of the SPECjms2007 Benchmark. In Pro-

ceedings of EPEW07, volume 4748, pages 228--244. Springer, 2007.

19. STAC-A1 Benchmark, http://www.stacresearch.com/council

20. STAC Report: Aleri Order Book Consolidation on Intel Tigertown and Solaris 10. Availa-

ble at: http://www.stacresearch.com/node/3844

21. Stream Query Repository, http://infolab.stanford.edu/stream/sqr/

22. White, S., Alves, A., Rorke, D. WebLogic event server: a lightweight, modular application

server for event processing. In Proc. of DEBS 2008.

23. Wu, E., Diao, Y., Rizvi, S. High Performance Complex Event Processing over Streams. In

Proc. of SIGMOD 2006.

