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Abstract. Event processing engines are used in diverse mission-critical scena-

rios such as fraud detection, traffic monitoring, or intensive care units. Howev-

er, these scenarios have very different operational requirements in terms of, 

e.g., types of events, queries/patterns complexity, throughput, latency and num-

ber of sources and sinks. What are the performance bottlenecks? Will perfor-

mance degrade gracefully with increasing loads? In this paper we make a first 

attempt to answer these questions by running several micro-benchmarks on 

three different engines, while we vary query parameters like window size, win-

dow expiration type, predicate selectivity, and data values. We also perform 

some experiments to assess engines scalability with respect to number of que-

ries and propose ways for evaluating their ability in adapting to changes in load 

conditions. Lastly, we show that similar queries have widely different perfor-

mances on the same or different engines and that no engine dominates the other 

two in all scenarios.  

Keywords: Benchmarking, Complex Event Processing, Micro-benchmarks. 

1 Introduction 

Complex Event Processing (CEP)1 has emerged as a new paradigm to monitor and 

react to continuously arriving events in (soft-)real time. The wide applicability of 

event processing has drawn increased attention both from academia and industry, 

giving rise to many research projects [1, 2, 7, 16] and commercial products. CEP has 

been used for several purposes, including fraud detection, stock trading, supply-chain 

monitoring, network management, traffic monitoring or intensive care units control. 

Most scenarios where event engines are being deployed are mission-critical situa-

tions with demanding performance requirements (e.g., high throughput and/or low 

latency). Interestingly, the range of scenarios is very broad and presents very different 

operational requirements in terms of throughput, response time, type of events, pat-

terns, number of sources, number of sinks, scalability, and more. It is unclear what 

type of requirements demand more from engines, what happens when parameters are 

varied, or if performance degrades gracefully. To address the lack of event processing 

performance information, in this paper we make the following contributions: 

                                                           
1 We use the terms “complex event processing”, "CEP" and "event processing" interchangea-

bly. Likewise, we also use the terms "CEP system" and "CEP engine" interchangeably. 



i. We present a number of micro-benchmarks to stress fundamental operations 

such as selection, projection, aggregation, join, pattern detection, and win-

dowing (summarized in Section 3). 

ii. We perform an extensive experimental evaluation of three different CEP 

products (two commercial, one open-source), with varying combinations of 

window type, size, and expiration mode, join and predicate selectivity, tuple 

width, incoming throughput, reaction to bursts and query sharing (Section 4). 

2 Event Processing Overview 

Like Data Stream Management Systems (DSMS) [1, 2, 16], CEP systems are de-

signed to handle real time data that arrive constantly in the form of event streams. 

CEP queries are continuous in the sense that they are registered once and then run 

indefinitely, returning updated results as new events arrive. Due to low-latency re-

quirements, CEP engines manipulate events in main memory rather than in secondary 

storage media. Since it is not possible to keep all events in memory, CEP engines use 

moving windows to keep only a subset (typically the most recent part) of the event 

streams in memory. In addition to these features shared with DSMS, CEP engines 

also provide the ability to define reactive rules that fire upon detection of specific 

patterns. Ideally, CEP engines should be able to continuously adapt their execution to 

cope with variations (e.g., in arrival rate or in data distributions) and should be able to 

scale by sharing computation among similar queries. 

Section 2.1 lists the operations typically performed by CEP systems. We use these 

operations as the basis of the micro-benchmarks of Section 3. 

2.1 CEP Characterization 

A few event processing uses cases have been recently published [6], but it is still 

unclear which of them, if any, is representative of the field. There is, however, a core 

set of operations used in most scenarios and available, in one form or another, in all 

products:  

 Windowing;   Filtering (Selection/Projection);  

 Transformation;   Sorting/Ranking; 

 Aggregation/Grouping;   Correlation/Enrichment (Join);  

 Merging (Union);  Pattern Detection. 

 

The performance of a CEP engine depends on: i) the algorithms implementing 

these basic operations; ii) parameters such as window type and size, and predicate 

selectivity; and iii) external parameters such as available resources, incoming data, 

and number and type of queries and rules.  



2.2 Window Policies  

Moving windows are fundamental structures in CEP engines, being used in many 

types of queries. Windows with different properties produce different results and have 

radically different performance behaviors. Window policies determine when events 

are inserted and removed (expired) from moving windows and when to output com-

putations. Three aspects define a policy [12]:  

i. Window type: determines how the window is defined. Physical or time-

based windows are defined in terms of time intervals. Logical, count-based, 

or tuple-based are defined in terms of number of tuples 2. 

ii. Expiration mode: determines how the window endpoints change and which 

tuples are expired from the window. In sliding windows endpoints move to-

gether and events continuously expire with new events or passing time (e.g., 

“last 30 seconds”). In jumping or tumbling windows the head endpoint 

moves continuously while the tail endpoint moves (jumps) only sporadically 

(e.g. “current month”). The infrequent jump of the tail endpoint of jumping 

windows is said to close or reset the window, expiring all tuples at once. In a 

landmark window one endpoint is moving, the other is fixed, and events do 

not expire (e.g., “since 01-01-2000”). 

iii. Update interval (evaluation mode): determines when to output results: 

every time a new event arrives or expires, only when the window closes (i.e., 

reaches its maximum capacity/age), or periodically at selected intervals. 

In general, commercial engines do not support all the combinations above. 

3 Dataset and Micro-Benchmarks 

In this section we describe the dataset used in our tests and summarize the micro-

benchmarks in Table 2 (a detailed description of the queries appears in Section 4). 

We use a synthetic dataset because it allows exploring the parameter and performance 

space more freely than any single real dataset. The dataset schema is based on sample 

schemas available at the Stream Query Repository (SQR) [21]. In most application 

domains of SQR, event records consist in: i) an identifier for the entities in the do-

main (e.g., stock symbols in trading examples); ii) a set of domain-specific properties 

(e.g., “price”, “speed”, or “temperature”), typically represented as floating point num-

bers; and iii) the time when the event happened or was registered. 

Based on these observations, we define the generic dataset schema of Table 1. The 

ID field identifies the entity being reported in the stream. The number of different 

entities, MAX_ID (ranges from 10 to 5.000.000), can greatly affect performance in 

joins, pattern matching queries, and aggregations. Tuple width is varied with the 

number of attributes Ai (from 1 to 125). The TS timestamp field is expressed in milli-

seconds and assigned by the load generator at runtime. 

                                                           
2 There are also semantic windows whose contents depend on some property of the data (e.g., 

all events between events “login” and “logout”). We do not consider semantic windows in 

our study as none of the engines we tested implements them. 



Table 1. Schema of the dataset used. 

Field Type Domain 

ID int Equiprobable numbers in the range (1, MAX_ID) 

A1...AN double Random values following a uniform distribution U(1,100) 

TS long Timestamp. 

Table 2. Summary of micro-benchmarks. 

4 Tests Specification and Results 

In this section we discuss the results obtained after running the micro-benchmarks 

on three CEP engines. We emphasize that it is not our intention to provide an in-depth 

comparison of existing CEP engines, but rather to give a first insight into the perfor-

mance of current products as a way to identify bottlenecks and opportunities for im-

provement. We focus on analyzing general behavior and performance trends of the 

engines (e.g. variations with respect to window size, tuple width, or selectivity). 

4.1 Tests Setup 

The tests were performed on a server with two Intel Xeon E5420 (12M Cache, 2.50 

GHz, 1333 MHz FSB) Quad-Core processors (a total of 8 cores), 16 GB of RAM, and 

4 SATA-300 disks, running Windows 2008 x64 Datacenter Edition, SP2.  

Query Factors under analysis Metrics 

Selection and 

Projection 

 Selectivity: [1%, 5%, 25%, 50%] 

 # attributes: [5, 10, 25, 50, 125] 
Throughput 

Aggregations 

and Windows 

 Window size (tuples): 500 to 500K 

 Window expiration: [sliding, jumping] 

 Aggregations: [SUM, MAX, STDEV] 

Throughput 

Joins 

 Input Source: [stream, window, in-

 memory table, external table] 

 Input Size (# events): 500 to 100M 

 Join Selectivity: 0.01 to 10 

Throughput 

Pattern 

Detection 

 Window Size (secs): 10 to 600 

 MAX_ID: [100, 1k, 10k, 100k] 
 Predicate Selectivity: 0.1% to 10% 

Throughput 

Large Time-

Based Windows 

 Injection Rate (events/sec): 500 to100K 

 Window Size: 10 minutes to 12 hours 

Throughput 

Memory consumption 

Adaptability ( See Section 4.8.) 

Maximum latency 

Latency degradation ratio 

Recovery Time 

Post-peak latency variation ratio 

Multiple 

queries 

 Number of Queries: [1, 4, 16, 64] 

 Window definition (size: 400k to 500k) 

Throughput  

Memory consumption 



    We ran our queries on three CEP engines, two of which are developer’s editions of 

commercial products and the other is the open-source Esper [11]. Due to licensing 

restrictions, we are not allowed to reveal the names of the commercial products, and 

will call engines henceforth as “X”, “Y”, and “Z”. We tried multiple combinations of 

configuration parameters to tune each engine to its maximum performance (e.g., 

enabling buffering at client side, or using different event formats and SDK versions).  

Figure 1 shows the components 

involved in the performance tests.  

Two slightly different architec-

tures were employed. In either 

case, the load generation compo-

nent communicates with an inter-

mediary process called Adapter 

via plain socket, and CSV text 

messages. The Adapter then con-

verts these messages into the 

native format of CEP engines and 

transmits them using their respec-

tive application programming 

interfaces (API). The difference between the two architectures shown in Figure 1 is 

that engines X and Z are standalone applications (architecture 1), while engine Y 

consists in a .jar file that is embedded into an existing application (architecture 2). 

This means that X and Z, receive/send events/results using inter-process communica-

tion, while Y uses lower-latency local method calls. 

The input streams data were generated and submitted using the FINCoS framework 

[15], a set of benchmarking tools we have developed for assessing performance of 

CEP engines. Both the load generation components and the event processing engines 

under test ran in a single machine to eliminate network latencies and jitter. CPU’s 

affinity was set to minimize interferences between the load generator, adapters and 

CEP engines. For all tests, unless otherwise stated, CEP engines ran in a single dedi-

cated CPU core3, while the load generator and Adapter ran in the remaining ones. 

4.2 Methodology  

Tests consisted in running a single continuous query at the CEP engine (except for 

the multiple-query tests of Section 4.9). They began with an initial 1 minute warm-up 

phase, during which the load injection rate increased linearly from 1 event per second 

to a pre-determined maximum throughput4. After warm-up, the tests proceeded for at 

least 10 minutes in steady state with the load generation and injection rate fixed at the 

maximum throughput. Tests requiring more time to achieve steady state (e.g. using 

long time-based windows) had a greater duration. All the measures reported represent 

averages of at least two performance runs after the system reaches a steady state. 

                                                           
3 We verified that two of the engines did not automatically benefit from having more cores 

available. For the third engine, the version we tested was limited to use only one CPU core. 
4 The maximum injection rate was determined by running successive tests with increasing 

throughputs until CPU utilization was maximized or some other bottleneck was reached. 

Figure 1. Architecture of evaluation setup 



4.3 Test 1: Selection and Projection Filters 

This micro-benchmark consists in two queries that filter rows (selection) or col-

umns (projection) using query Q1 of Figure 2 (written in CQL [16]): 

Q1: SELECT ID, A1,…,Am, TS 

    FROM   stream1 

    WHERE  ID <= K   

Figure 2. Filtering query  

The two data reduction queries vary the values of parameters K, N, and m (results in 

Figure 3). K is used to force desired selectivity, N is the number of input attributes and 

m is the number of projected output attributes (m≤N): 

i. Row selection: varies predicate selectivity from 

1% to 50%; N=m=5; 

ii. Column projection: varies number of input 

attributes N from 5 to 125; m is fixed at 1 and 

row selectivity at 100%.     

The throughputs achieved in this test series were very 

high, in millions of events per second. As expected, 

more selective predicates allow higher throughputs. The 

acute drop in performance in the projection query as the 

number of input attributes increases shows that tuple-

width greatly affects performance. Notice that in both 

tests, Engine X was not fully utilizing the available 

resources (utilization of its CPU was between 50% and 

90%) when its client API adapter became the bottle-

neck. Dedicating more CPU-cores to the adapter (up to 

7) did not solve this issue. 

4.4 Test 2: Aggregation and Window Policy 

The second micro-benchmark (query Q2 in Figure 4) evaluates aggregations over 

different tuple-window configurations. (Time-based windows are tested in sections 

4.6 and 4.7.)  

Q2: SELECT ID, f(A1) 

    FROM   stream1 [ROWS R Slide S] 

    GROUP  BY ID 

Figure 4. Aggregation Query, written in CQL [21]. 

We vary window size (parameter R from 500 to 500K), window type (parameter 

S=1 implies sliding window and parameter S=R implies jumping window), and ag-

gregation function (parameter f=MAX, AVG, STDDEV, MEDIAN). Note that some 

functions can be computed at fixed cost (STDDEV, AVG) while others become more 

expensive as the window gets larger (MAX on sliding windows, or MEDIAN). Regard-

Figure 3. Filtering tests: 

Selection and Projection. 



ing expiration mode, we expected sliding windows to be more expensive than jump-

ing for two reasons. First, sliding windows expire tuples one-by-one while jumping 

windows expire them in batches. Second, sliding windows might need to keep more 

in-memory state (to deal with tuple-by-tuple expirations) while jumping windows 

may keep only counters and small summary data. Results are summarized in Figure 5. 

  
 (a) (b) (c) 

Figure 5. Aggregations Tests: varying windows sizes and policies on (a) sliding windows and 

on (b) jumping windows. Graph (c) is the CPU utilization of engine X for jumping windows. 

Oddly, engine X had a worse performance with 

the jumping expiration mode than with sliding one. 

The cause seems to be inefficient batch-expiration 

of the jumping window tuples as shown by the 

peak CPU utilization coinciding with the periodic 

batch-expiration (Figure 5c). On engine Z, the 

performance difference between the two expiration 

modes was surprising: very high throughputs with 

jumping windows (the best of the three engines at 

around 550K tuples/second) but very low through-

puts with sliding windows (the worse of the three, 

reaching only 50 tuples/second for windows of size 

500K). For engine Y, results appears at first to meet 

our expectations, but in fact these two test cases are not directly comparable since Y’s 

sliding windows output updated results for every tuple while its jumping windows 

update results only on window reset. Indeed, jumping windows showed a better per-

formance not due to an implementation that benefit from the characteristics of this 

expiration mode, but rather, to a reduced evaluation/output frequency – examining Y’s 

open-source code we observed that the MAX aggregation is always computed by keep-

ing the events of the window in a sorted structure; while this is a reasonable ap-

proach for sliding windows, it is inefficient for jumping windows, where MAX could be 

computed at constant cost. Except for the aforementioned issue regarding computa-

tion of MAX on engine Y, varying the aggregation functions between AVG, STDEV 

and MAX generally had minor effects on performance of all engines. In contrast, all 

engines achieved considerably lower throughputs in the tests with the MEDIAN func-

tion. The MEDIAN function also showed to be more sensitive to window size than the 

other functions (e.g. see Figure 6). 

Figure 6. Median vs. Sum 

aggregates on engine X. 



4.5 Test 3: Joins 

This micro-benchmark evaluates join performance of CEP engines. We define 

three test series, each with different data sources and factors under analysis:  

J1. Window-to-window join – joins two windows that are constantly being up-

dated by event arrivals in the corresponding input streams; 

J2. Stream-to-in-memory-table – simulates the situation where the content of an 

input stream must be enriched with static data stored as an in-memory table;  

J3. Stream-to-DBMS-relation – table stored in an external database; 

J1: Window-to-window 

The window-to-window join query is the following: 

Q3: SELECT * FROM  stream1 [ROWS S] AS S1, 

                   stream2 [ROWS S] AS S2 

    WHERE  S1.ID = S2.ID 

Figure 7. Window-to-window Equi-Join Query 

J1 series is comprised of three different tests as described below: 

J1-1 Varying window size and join selectivity: parameter S varies from 500 to 

500k. MAX_ID is held constant at 50k (i.e.,  the join is more selective for 

smaller window sizes); 

J1-2 Varying window size and keeping join selectivity: parameters S and MAX_ID 

take the same values, from 500, to 500k, which ensures a fixed 100% join se-

lectivity (each event finds a single match on the other window); 

J1-3 Varying join selectivity and keeping window size fixed: MAX_ID takes the 

values 5k, 50k, 500k, and 5M while parameter S is held at 50k (each event 

finds, on average, 10, 1, 0.1 and 0.01 matching events on the other window). 

Figure 8 below shows the results for this test series. 

      

Figure 8. Tests Join: Window-to-window. 

In J1-1, the acute drop in throughput was expected (due to increases in join input and 

selectivity) although the performance of engine Z degraded much faster than the per-

formance of other engines. (Recall that engine Z showed performance issues on pre-



vious tests with aggregations over sliding windows, which seems to indicate that it 

has some problems with this expiration mode.) 

Tests J1-2 and J1-3 reveal that engine X is more sensitive to window size while en-

gine Y performs very well when join selectivity is low, but degrades more quickly 

when it gets close to or exceeds 1. For engine Z, we ran a modified version of J1-3, 

with a smaller window (size 500, not shown) in order to minimize the cost of window 

maintenance but there were no noticeable performance differences when varying the 

join selectivity, indicating again that sliding windows are not efficiently handled by Z. 

J2/J3: Stream-to-in-memory-table and Stream-to-DB-relation 

The queries of tests J2 and J3 have the following format: 

Q4: SELECT * FROM   stream1 AS S, 

                    table1  AS T 

    WHERE  S.ID = T.ID 

Figure 9. Stream-to-table Join Query 

Figure 10 shows the corresponding results. In 

both tests a stream “S” with 4 fields is joined with a 

static table with 10 fields. In J2 the CEP engine is 

responsible for maintaining the table in main memo-

ry and for performing the join. In J3 the table is 

stored in an external database, which becomes re-

sponsible for the join (every new event in stream S 

fires a parameterized query to the DBMS5). The 

number of records in the table ranged from 1k to 

10M (in-memory) and from 1k to 100M (DB); join 

selectivity is always 100% (every event in the 

stream is matched against one and only one record 

in the table).  

In series J2, engine Y could not complete the test 

with 10M because it ran out of memory (prolonged 

garbage collections made it unresponsive). It is also 

interesting to notice how Z had a better join perfor-

mance when operating over a table rather than over 

sliding windows (see J1-2, in Figure 8). In J3, two 

facts are worth mentioning: first, neither the CEP 

engines nor the DBMS were in their processing lim-

its; the bottleneck was primarily the communication 

between these two components. Second, the perfor-

mance was virtually unaffected from 1k to 1M as the DBMS was able to buffer the 

entire table into main memory. From this point on, the presence of IO calls, signifi-

cantly lowered the query throughput. 

                                                           
5 We tested both with MS-SQL Server™ 2005 and Oracle™ 11g, and the results were similar. 

Figure 10. Tests Join be-

tween stream and table (J2) 

in-memory or (J3) in external 

database. 



4.6 Test 4: Pattern Matching and Negative Pattern Matching 

We used query Q5 and Q5n below to test pattern matching. Q5 searches for in-

stances of two events with the same ID in a time-based window of size interval, 

where the “A1” attribute of the second event is above some constant K. Q5n searches 

for sequences of an event not followed by a corresponding event within an interval. 

Q5: PATTERN SEQ(A a1, A a2)   Q5n: PATTERN SEQ(A a1, ~(A a2)) 

    WHERE a1.id = a2.id AND         WHERE a1.id = a2.id AND 

          a2.A1 > K                       a2.A1 > K 

    WITHIN interval                 WITHIN interval 

Figure 11. Sample Pattern Matching Queries (expressed using the SASE+ language [23]) 

The purpose of the “a2.A1>K” predicate is to verify that CEP engines indeed 

benefit of predicates in pattern detection by pushing them earlier in query plan con-

struction. This micro-benchmark exercises three factors:  

i. Varying Window Size: parameter interval ranges from 10 to 600 seconds. 

MAX_ID is held constant at 10k and K ensures a selectivity of 0.1%; 

ii. Varying Cardinality of Attribute ID: MAX_ID ranges from 100 to 100k. in-

terval was held constant at 1 minute and K ensures selectivity of 0.1%; 

iii. Varying Predicate selectivity: the predicate selectivity varied from 0.1% to 

10%, while interval was held at 1 minute and MAX_ID at 10k. 

Figure 12 show the results of Q5. In the first experiment, all the engines had a very 

similar decrease in throughput as interval got larger. We could not determine the 

performance of engine Z for windows of sizes above 5 minutes because it consumed 

all available memory before tests could reach steady state (the  edition we tested was 

limited to address at most 1.5GB of memory). As expected, increasing the cardinality 

of the correlation attribute ID decreases query cost, since less tuples pairs will have 

matching IDs. Similarly, more selective predicates (lower percentages) yield better 

performance as less tuples are considered as potential patterns matches.  

Q5n showed to be less expensive than Q5. This difference has to do with the 

consumption mode [10] used in these tests (all-to-all): in the case of negative patterns 

a single occurrence of an event “a2” eliminates many potential matches. (results of 

tests with negative pattern have been omitted due to space constraints). 

  
 (a) (b) (c) 

Figure 12. Pattern matching Tests varying (a) window size; (b) #IDs; (c) predicate selectivity. 



4.7 Test 5: Large Time-Based Windows 

Large time-based windows over high throughout sources may quickly drain system 

resources if all incoming events need to be retained. For example, one hour of 20-

byte-size events on a 50k event/sec stream represents around 3.4 GB. Fortunately, 

certain applications require results to be updated only periodically, say every second, 

rather than for every new event (see Q6 bellow). In that case, for distributive or alge-

braic functions [14], Q6 can be rewritten in the equivalent query Q7. 

Q6: SELECT AVG(A1)  

   FROM   A [RANGE 1 HOUR] 

   OUTPUT EVERY 1 SECOND; 

 

Q7: SELECT SUM(s1)/SUM(c1) 

   FROM (SELECT SUM(A1) AS s1, COUNT(A1) AS c1 

         FROM A[RANGE 1 SECOND] 

         OUTPUT EVERY 1 SECOND 

         ) [RANGE 1 HOUR]; 

Figure 13. Two versions of aggregation query over time-based window with controlled output 

Query Q7 computes 1-second aggregates on the inner query and 1-hour aggregates 

over the 1-second aggregates with the outer query. The space requirements of Q7 are: 

Inner window: (50000 events/second * 20bytes/event) * 1second  =  977KB  + 

Outer window: (1 tuple/second * 20bytes/tuple) * 3600 seconds    =    70KB  

This micro-benchmark runs Q6 and Q7 for large different window sizes and vary-

ing input rates. The goal is to verify if: i) Q6 is internally transformed into Q7; and ii) 

if not, to quantify the benefits of such transformation. The results of Q6 and Q7 for a 

10-minute window appear in Table 3. 

Table 3. Memory consumption (in MB) of CEP Engines for Q6 and Q7 (10-minute window) 

 Input Rate 

Engine/Query 500 5,000 50,000 100,000 

X, Q6 187 1,553 Out-of-memory Out-of-memory 

X, Q7 39 40 64 98 

Y, Q6 455 3,173 Out-of-memory Out-of-memory 

Y, Q7 139 141 1,610 1,652 

Z, Q6 56 64 56 55 

Z, Q7 69 68 77 91 

Observe that in engines X and Y query Q7 indeed reduced memory consumption 

when compared to Q6. In fact, Q6 showed a near-linear growth with respect to input 

rate and as such, engines X and Y exhausted memory (more than 13GB) for input 

rates above 50k events/sec even on small 10-minute windows. Engine Z had its mem-

ory consumption virtually unaffected by the input rate and almost identical in both 



query versions; these results made us suspect at first that Z could be the only engine 

applying the query transformation automatically. 

We then ran a second series of experiments with much larger windows. Input rate 

was kept at 100k events per second and window size was progressively increased up 

to 12 hours. The durations of these tests were always 1.5 times the window size. For 

engines X and Y, we ran the tests with Q7. For engine Z we tested both versions. 

Table 4 summarizes the results. 

Table 4: CEP Engines’ memory consumption for very large time-based windows (MB) 

 Window Size 

Engine/Query 20 min 1 hr. 2 hrs. 6 hrs. 12 hrs. 

X, Q7 114 128 141 146 147 

Y, Q7 5,275 5,303 5,232 5,362 5,279 

Z, Q7 70 73 55 58 52 

Z, Q6 63 58 46 48 48 

This new experiment exposed a behavior of engine Z not revealed in previous tests. 

While in the first experiments Z was able to keep memory consumption roughly unaf-

fected by the number of events in the window, in this second series of tests, the CPU 

utilization and consequently maximum throughput were severely affected by the win-

dow size.  As shown in Figure 14, Q6 had 

a drastic drop in maximum throughput as 

window size was increased, while Q7 

showed a very steady throughput curve. It 

is worthy to point out that in the tests 

with Q6 CPU was pushed to its maxi-

mum (for windows of 20 min and 

beyond), while with Q7 CPU utilization 

stayed always around 1%. These numbers 

indicate that Z also does not perform the 

transformation mentioned above, but 

rather has an alternative implementation 

which sacrifices maximum throughput to 

keep memory consumption controlled.  

4.8 Test 6: Adaptability to Bursts 

The objective of this micro-benchmark is to verify how fast and efficiently the 

CEP engines adapt to changes in the load conditions. Although many factors may 

cause variations in the execution of continuous queries, here we focus solely on input 

rate. The tests of this series consist in: 

i. An 1-minute warm-up phase during which the injection rate is progressively 

increased until a maximum value λ that makes CPU utilization around 75%; 

ii. A 5-minute steady phase during which the injection rate is kept fixed at λ; 

Figure 14 – Q6 and Q7 aggregations 

over large time-windows (engine Z). 



iii. A  10-second “peak” phase during which the injection rate is increased 50% 

(to 1.5λ), making the system temporarily overloaded; 

iv. A 5-minute “recovery” phase in which the injection rate is again fixed at λ; 

The query used is Q2, shown in Figure 4. To characterize the adaptability of CEP 

systems we define the following metrics: 

 Maximum peak latency (Max_RTpeak): maximum latency either during or af-

ter the injection of the peak load; 

 Peak latency degradation ratio (RT_Degradationpeak): 99.9th-percentile laten-

cy of peak phase with respect to 99.9th-percentile latency of steady phase: 
99.9th_RTpeak/99.9th_RTsteady 

In other words, what is the increase in latency caused by the peak? 

 Recovery Time (Δτrecovery): 

τrecovery-τpeak 

where τrecovery represents the timestamp of the first output event after peak in-

jection whose latency is less than or equal the average latency of the steady 

phase and τpeak is the timestamp of the last input event of the peak phase. 

That is, how long does it take for to return to the same latency levels? 

 Post-peak latency variation ratio: Average latency after recovery divided by 

the average latency during steady phase:  
RTafter_ecovery/RTsteady_phase 

That is, what is the state of the system after it recovers from the peak? 

Discussion: Blocking/Non-Blocking API and Latency Measurement 

Recall from Figure 1 that events are sent to engines through API calls. On engine 

X, those API calls are non-blocking while on engines Y and Z they are blocking. In 

practice this means that X continues queuing incoming events even if overload while 

Y and Z prevent clients from submitting events at a higher rate than that they can 

process. As shown in Figure 15, there are 

multiple ways of computing latency. In order 

to properly measure latency for blocking 

calls, it is necessary to employ the “creation 

time” of input events instead of their “send 

time” – formula (3) in Figure 15. This for-

mula allows accounting for the delays intro-

duced by the blocking mechanism of the 

client APIs, which otherwise would pass 

unnoticed if we employed the moment im-

mediately before sending the event. 

Results 

Table 5 and Figure 16 show the results of the adaptability test. Engine X, which 

adopts a non-blocking posture in the communication with clients, took much longer to 

recover from the peak and had a higher maximum latency than the two blocking en-

gines, Y and Z. Nonetheless, after recovery, all engines returned to virtually the same 

latency level as that observed before the peak. 

Figure 15: Latency Measurement. 



Table 5. Results for Adaptability Tests 

 Engine 

Metric X Y Z 

Max_RTpeak (ms) 4.725,0 1.262,0 1.483,0 

RT_Degradationpeak 82,8 57,4 5,9 

Δτrecovery (ms) 43.039,0 1.308,0 1.544,0 

RT_Variationpost 1,0 0,9 1,0 

 

Figure 16. Adaptability Test: Scatter plot of latency before, during and after the peak. 

4.9 Test 7: Multiple Queries (Plan Sharing) 

The objective of this micro-benchmark is to analyze how the CEP engines scale with 

respect to the number of simultaneous similar queries. The query used in this experi-

ment is a window-to-window join similar to Q3 (Figure 7). We tested two variations: 

 Test 1: Identical queries. In this test we 

focus on computation sharing and the main 

metric is hence throughput. Window size 

is fixed in 1000 rows. To keep output rate 

fixed (1 output per input event), all queries 

have a predicate whose  selectivity in-

creases as we add more queries; 

 Test 2: Similar queries with different 

window sizes. In this test we focus on 

memory sharing, so windows are large 

enough to observe differences when we in-

crease the number of queries (in the range 

[400k-500k events]) and the injection rate 

is low so that CPU does not become a bot-

tleneck;  

The results of these two tests are shown in Fig-

ure 17. Engine X is the only one to implement 

some kind of query plan sharing: in the first test its throughput remained unaffected 

when the number of queries was increased. However, in the second test, in which 

queries were similar but different, it was not able share resources. Results also indi-

cate that engines Y and Z do not implement query plan sharing. In fact, Y and Z could 

Figure 17: Multiple Queries Tests 



not finish some tests of the second series: Y ran out of memory for 64 queries and Z 

become unresponsive while the window was being filled. 

5 Related Work 

Up to now, little previous work focused on the performance evaluation of event 

processing systems. White et al. [22] present a performance study which shows the 

latencies of a commercial CEP product while handling large volumes of events. 

Dekkers [8] carried out some tests for evaluating pattern detection performance in two 

open-source CEP engines. None of them characterize how query options such as 

window size and policy, or selectivity affects performance, nor covered more than 

one or two query type(s) or CEP product(s). 

Some benchmarks have been proposed in areas related to CEP such as the BEAST 

benchmark [5] for active databases, or the Linear Road [3] or NEXMark [17] bench-

marks for data stream management systems. However, these benchmarks measure 

only steady state performance for a fixed number of queries, and do not consider 

issues such as adaptability and query plan sharing. SPECjms2007 [18] is a benchmark 

produced and maintained by the Standard Performance Evaluation Corporation 

(SPEC) aimed at evaluating the performance and scalability of JMS-based messaging 

middlewares. SPECjms2007 thus focus on the communication side of event-driven 

systems rather than on query processing, which distinguishes it from our work. 

6 Conclusions and Future Work 

In this paper we presented a performance study of event processing systems. We 

proposed a series of queries to exercise factors such as window size and policy, selec-

tivity, and event dimensionality and then carried out experimental evaluations on 

three CEP engines. The tests confirmed that very high throughputs can be achieved by 

CEP engines when performing simple operations such as filtering. In these cases the 

communication channel – in our tests, the client API – tends to be the bottleneck. We 

also observed that window expiration mode had a significant impact on the cost of 

queries. In fact, for one of the tested engines the difference in performance between 

jumping and sliding windows in one test was about 4 orders of magnitude. With re-

spect to joins, tests revealed that accessing data stored in databases can significantly 

lower the throughput of a system. Pre-loading static data into CEP engine offers good 

performance and may thus solve this issue, but this approach is feasible only when 

data do not change often and fit in main memory. The tested engines had disparate 

adaptability characteristics. We observed that the approach used to receive events 

from clients – either blocking or non-blocking – plays a fundamental role on that 

aspect, although further investigation is still required to fully understand this topic 

(e.g., testing bursts of variable amplitudes and durations or having changes in other 

parameters such as data distributions). Finally, the tests with multiple queries showed 

that plan sharing happened only in one CEP engine and only for identical queries (we 

still plan to broaden the investigation of this topic by incorporating tests with other 



classes of queries). It was also quite surprising and disappointing to realize that CEP 

engines were not able to automatically benefit from the multi-core hardware used in 

our tests. In general terms, we concluded that no CEP engine showed to be superior in 

all test scenarios, and that there is still room for performance improvements. 
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