
9ticks – The Web as a Stream

Rafael Marmelo, Pedro Bizarro, Paulo Marques

CISUC/DEI – Polo II

University of Coimbra

3030-290 Coimbra, Portugal

rjmm@student.dei.uc.pt, {bizarro, pmarques}@dei.uc.pt

Abstract. The Internet contains thousands of Frequently Updated, Time-

stamped, Structured (FUTS) data sources. This type of information represents a

different class of information that is not properly handled by existing data

management systems such as databases, data warehouses, search engines, pub-

sub, event processing, or information retrieval systems. In this position paper

we describe 9ticks, a system we are designing to collect, parse, store, query, and

disseminate FUTS information. 9ticks is helping us understand that all those

steps raise new challenges but also bring new opportunities. In this paper we

summarize the challenges identified and present our vision of an end-to-end

FUTS management system.

Keywords: Internet, database, events, event processing, web crawler, extract

web data, manage web data

1. Introduction

The Internet contains thousands of Frequently Updated, Time-stamped, Structured

(FUTS) data sources. Unlike semi-structured personal web pages, news sites or blogs,

many of those FUTS sources have a very regular structure. Some of those frequently

updated data sources are web pages or portions of web pages that, as if they were

sensor streams, represent states and updates of real-world things. Examples of such

pages include sports scores, stock and exchange information, real-time flight details,

weather reports, auction values, traffic reports, monitoring tools (such as Ganglia’s

cluster monitoring tool [14]), product prices and rankings, DHL and FedEx tracking

sites, and many millions of tables with structured information [7, 8]. Similar to a

database record, much of this information is composed of a regular, fixed schema of

easily inferred data types such as dates, strings, numbers, or unique identifiers. Many

of these events – as they are sometimes called – could be used to detect interesting

patterns or make important personal decisions. For example: Is road traffic delay

much higher today? Did my DHL package arrive? What was the average price

between a British Airways NY-London flight last year? Currently, users either

discover new updates to those sources using simple push mechanisms (e.g., site-by-

site alerts or RSS feeds), simple pull mechanisms (e.g., browser or email refresh), or

simply not at all.

2 Rafael Marmelo, Pedro Bizarro, Paulo Marques

Although there are many systems that crawl, parse, store, index, and query the

web, none is able to capture FUTS data sources and, thus, their values are lost forever.

In fact, search engines such as Google don’t give much freedom on querying the web

as of a point in the past. Sites such as the Internet Archive [16] display glimpses of

the past, but not detailed enough to, say, determine the average price of a NY-London

flight. Zoetrope [1] allows the user to see the past but only for a small subset of pre-

selected pages. On the other hand, approaches such as Semantic Web [5, 13], that aim

to make web content comprehensible to computers, are complementary to our work

but are not as concerned with high scale, high throughput, low response time, as our

system is in addressing those issues. Also, unlike Semantic Web approaches, we focus

our work on simpler schemas and are not as concerned with matching semantic

meaning across schemas.

In short, we believe that FUTS data sources are not being properly handled by

current systems. Specifically, there are two major concerns we have. First, FUTS data

is not stored anywhere and is lost forever. Second, because FUTS data is not easily

available, no alarms are raised or comparisons are made when new data is available.

In the rest of the paper we list some interesting challenges and opportunities in

building a new type of system to handle FUTS data properly. In Section 2 we describe

our vision of an end-to-end FUTS Data Management System that is able to collect,

parse, store, query, and disseminate generic FUTS information while scaling to

thousands of sources and millions of users. Next, in Section 3, we identify some of

the challenges of building such a system. In Section 4 we describe 9ticks, a prototype

FUTS Data Managing System that we are building at the University of Coimbra.

Finally, we summarize and conclude in Section 5.

2. A vision for a FUTS Data Management System

A FUTS Data Management System (FDMS) is a system that regularly collects

information from millions of frequently updated, timestamped, Internet sources. Some

sources will be well-known, commonly requested, previously indexed sources such as

stock, weather or flight tracking information which might even take advantage of

special protocols and adapters to obtain information before it reaches the web. Other

sources will be user-specified sources.

There are hundreds of applications to obtain information from single, well-known

sources. These applications target those commonly requested sources, and run stand-

alone in personal computers or smartphones or, as widgets or gadgets as they are

commonly called, included in personal dashboard web pages as provided by services

such as Alerts.com, iGoogle, NetVibes, PageFlakes, My Yahoo! or Webwag.

These services handle the commonly requested data sources but: i) cannot track

user-specific needs, and ii) force the user to install many tens of similar applications

or widgets. For example, although there are many applications to track the English

Premier League football, there is no similar application to track the Portuguese

Second Division football results even though the results are made available in real-

time on the web.

9ticks – The Web as a Stream 3

The challenge, then, is to build a generic system that can treat any information on

the Internet, such as a user-defined portion of a web page, as a data source and send it

in a timely fashion to specific users. For example, assume someone wants to track

how many references are there in Google for “9ticks”. In our vision, that user

searches Google for 9ticks. Then, using, e.g., a browser plug-in, she clicks the Item

Capture option of the browser plug-in (Fig. 1) and next she selects the total on the

search results page (Fig. 2).

The plug-in then parses the page to obtain the XPath to

the selected HTML element (normalized to XHTML). Next,

the system infers the type of the selected element based on

the value and using a library of common type formats (some

examples of possible inferred types include integer, real,

date, time, currency, temperature, DHL tracking number,

football scores, golf scores, or free text) or asks the user to

provide type information. This information, as well as a

refresh rate (user-defined or not), is then transmitted to the

FDMS as a new data source to track. Periodically, the

FDMS schedules jobs to collect and parse (potentially new)

information from the data sources, stores them in persistent,

distributed storage, and pushes new information to clients

as needed. The user can then see the new source in her

personal web page or mobile device together with all the

other things she is tracking (Fig. 3). Different types of

events will be represented with different graphics or colors

depending on data types or user choices.

In addition to seeing the most recent values from her data sources, a user should

also be able to browse back in time and see past values, summaries, or trends.

Furthermore, in most cases, users shouldn't have to go through this marking process.

Once one user has marked a data source, it should become available to any other user

looking for the same information. As Google provides a search engine for web pages,

a proper FDMS provides search capability for finding previously marked sources.

We expect that in a FDMS such as the one described above the number of

subscribers per source will follow a Zipf’s distribution [4]. That is, some sources will

have millions of subscribers and millions of sources have only a few or just one

Fig. 1. Select capture mode

Fig. 2. User selects the item to capture by drawing a (red) box with the computer mouse

Fig. 3. A FDMS client

showing multiple

sources and running in a

mobile device

4 Rafael Marmelo, Pedro Bizarro, Paulo Marques

subscriber. Building a system with millions of sources and millions of users, where

data is extracted from web pages, and where the structure of those pages, while

mostly fixed, might slowly change over type, identifying multiple sources with

equivalent data, optimizing the refresh and push mechanisms, and delivering data in a

timely manner are big challenges that need to be overcome. In the next section we list

a few of those challenges.

3. FDMS: Challenges Ahead

A FDMS needs to collect, parse, store, query, and disseminate FUTS information.

Below, we detail challenges related to those activities.

3.1. Frequency of Revisits

Unlike a search engine, a FDMS has no set of crawlers, jumping from page to page,

parsing pages and following links. Instead, the system will start with a number of pre-

defined sources and will grow as users add their own preferred sources. While the

number of indexed unique sources of a FDMS will be much smaller than the number

of unique sources collected by a search engine, the frequency of revisits of the FDMS

sources will be much higher than the frequency of revisits performed by a search

engine crawler. For example, while Google crawlers revisit personal web pages on the

scale of once every week or every month and crawls high-ranked sites such as the

BBC several times a day, a FDMS might have to obtain fresh data once per minute

(e.g., for football matches or stock updates). In addition, the optimal frequency of

revisits of FUTS sources will vary with time (e.g., there are no stock updates during

weekends or at night), might be irregular (e.g, only needs to get fresh football scores

on game days) and might be knowable (e.g., the exact day and time of games is

known before the game starts).

If the sources are user-defined, defining the frequency of revisits is even harder.

Different users might define different revisit frequencies for the same source or might

require frequencies which are non-optimal (e.g., 1-second revisit frequency for flight

information). The system should detect that a source is changing much slower than

the revisit frequency and should automatically increase the revisit frequency.

Regarding storage, the system should be able to detect when a source has not changed

to avoid storing repeated values.

3.2. Collect and Parse

Although the information we want to collect has a regular fixed structure (e.g., a

Manchester United football score has always two numbers for the home and away

goals), the location of the information in the page might change (e.g., the score

information might be in any row of a table with the week matches) or the structure of

the web page itself may change. Thus, the correct place to fetch the data from might

not exactly match the path stored upon the data source creation. The collect and parse

9ticks – The Web as a Stream 5

process must be robust to those changes. Finding the location might imply a similarity

match between the tree structures of the original and current web page versions.

Note, however, that the user is not expected to mark, e.g., every game of a football

team. Instead, the user should mark a place in a web page where the latest results of

her team are displayed. For example, the latest Manchester United score will be the

first score of its BBC’s My Club results page1.

In addition, many sources, such as the Manchester United latest scores, might be of

interest for multiple users. After one user identifies a (portion of a) page as a source,

other users can search, find and get events from that source. We expect that, as in

Wikipedia, details of each source (e.g., fields to parse, meaning of fields, frequency of

revisits) can be discussed, agreed upon, and changed by the interested or higher

ranked users.

3.3. Storage

Given the scale of the data to collect and store, a FDMS must have an appropriately

scalable storage system. Some of the most scalable storage systems ever built are

Bigtable [10] and HBase [3], the ones used by distributed programming tools

MapReduce [11] and Hadoop [2], the tools that support the search engines of Google

and Yahoo! Those storage systems however, are optimized for high throughput and

for batch updates and are likely not appropriate for low response time, continuous

inserts. Recent work shows that Hadoop has response times orders of magnitude

higher than database management systems performing the same tasks on the same

clusters [18]. We expect that developing a petabyte-scale system with millions of

queries per day, with very low read response times and very high insert rates is the

most challenging task of building an FDMS.

3.4. When to forget and how to forget

A FDMS has to deal with data at a web-size scale. It is, by design, thought to index

and store the rapidly changing structured web information. Storing raw data will

represent a large number of terabytes. However, a combination of forgetting old

enough data with keeping summaries at ever increasing coarser levels will reduce

storage requirements. For example, while data recently collected may have a very

high granularity (e.g., at a minute or even second scale), older data will be aggregated

and summarized (e.g., at a day or month scale). This is natural if we think that, for

instance, when doing stock trading people are interested in the current fine changes in

price, while looking into the past people only want to send the trends that took place.

Also, is some cases a FDMS should forget sufficiently old data. For example, some

events are only interesting until a specific point in time (e.g., a package that is due to

arrive). After that, they rapidly lose interest.

1 http://news.bbc.co.uk/sport2/hi/football/teams/m/man_utd/results/default.stm

6 Rafael Marmelo, Pedro Bizarro, Paulo Marques

3.5. Query

Building a system that is simultaneously efficient for range queries (e.g., stock values

between two points in time), window aggregations (e.g., computing 1h moving sums

of the volumes per stock symbol), and continuous inserts using a distributed storage

system will be challenging. In fact, the data management market is now segment into

different products (databases, data warehouses, event processing systems, and

distributed storage systems), each specialized for different types of operations. The

specialization of those products is such that, e.g., although planned, Hadoop does not

currently even allow the selection of all values between two timestamps.

4. 9ticks: an early prototype

At the University of Coimbra we are building a prototype FDMS code-named 9ticks.

9ticks already tracks pre-defined and user-defined sources, is able to detect simple

data types from web pages (integers, doubles, temperatures), schedules revisits of web

sources periodically, parses and extracts information from the pages, stores them on

Hypertable [15] (an open source, high performance, scalable database, alternative to

HBase), produces running aggregations automatically and sends results to web

clients.

Currently 9ticks is deployed in a Service Oriented Architecture [12] as shown in

Fig. 4.

Enterprise Service Bus

Crawler

S
c
h

e
d

u
le

r

C
o

lle
c
to

r
#
1

C
o

lle
c
to

r
#
2

C
o

lle
c
to

r
#

3

Web Client Mobile Client Caching

Service

Directory

Alert Generator

A
le

rt

E
n

g
in

e

A
le

rt
 N

o
ti
fi
e

r

Presenter
(orchestrator)

Browser

Extension

W
e

b
 F

e
tc

h
e

r

Persistence

Aggregator

Not developed

In development

Although a SOA is not the best design in terms of end-to-end response time, it will

allow starting with an initial system and continuously re-design, replace and scale

components as needed with minimum disruption to the other modules.

The Browser Extension module is a browser plug-in that lets the user select a piece

of a web page as a user-defined data source. The plug-in captures the XPath to the

element selected by the user, identifies the data types in question, proposes display

modes and refresh rates, and then sends everything to the Crawler module.

Fig. 4. 9ticks current architecture

9ticks – The Web as a Stream 7

The Crawler module is responsible to regularly poll data sources. This module is

composed of several sub-modules with the roles of Scheduler, Collector, and Web

Fetcher. The Scheduler assigns tasks (e.g., data sources to poll) to Collectors.

Collectors perform the polling using Web Fetchers to convert data from the sources.

The Alert Generator module (not implemented yet) will be composed by an Alert

Engine and an Alert Notifier. The Alert Engine continuously reads the new

information collect by the Crawler module and checks which information needs to be

sent to which users. The Alert Notifier then sends the information to the user using

one of possible multiple channels (e.g., dashboard application, email, SMS).

Currently, the Alert Notifier only sends information to the user Web Client dashboard.

The Persistence module stores all the information (users, data sources, current and

past values, and meta-data) and is currently implemented on Hypertable. The

Persistence module automatically computes and stores running averages and sums on

some types of sources such as temperatures and stock prices. Those running

aggregates are computed at several levels (currently every minute, hour, day, month,

and year). Those running aggregations are then used to display past historical data.

For example, if a user wants to see a graph of the previous month (day) of historical

stock data, then the system will read the aggregated values from the day-level (hour-

level) aggregation.

Currently, the Caching module simple caches the last gathered event. The Mobile

Client module is not implemented yet. The Presenter module will implement the

presentation logic by abstracting the system to the Web Client and Mobile client

modules. The Server Directory module is a well-known service that allows the other

services to discover each other.

We are currently improving the Browser Extension, Collector, and Adaptor

modules to allow more sophisticated user-defined sources, types, and queries [9], and

to make the scrapping process more robust to web page changes. At this point, we

support simple HTML and active JavaScript-based pages. Flash-based web pages are

not supported although screen-capture followed by OCR could help capture simple

flash-based web pages.

Regarding early results, we have been collecting and storing information from

about 40 web FUTS sources (weather reports, CPU usage, stocks, eBay prices,

football scores, Google searches, digg statistics, and more) for about 2 months. The

results from these sources are being continuously collected and summarized at

different aggregation levels (every minute, hour, day, month, and year) within

Hypertable. The total space consumption is currently just a couple of Gigabytes. The

different aggregated values are then used to build smooth graphs with past data. Fig.

5 shows a screenshot of 9ticks: clockwise, starting on the top-left corner, it shows the

temperature in London in a 2-week period, the current CPU utilization breakdown of

the student accounts server in our department, the high and low values from GE stock,

the weekly highest box office US movie, the number of reported hits for a “Swine

flu” Google search in the past month, and the current most popular article at digg.

Also shown in Fig. 5 is a drop-down list showing a partial list of sources currently

stored at 9ticks. Note that in terms of query language, the user simply searches

sources by keyword. Then, the source is added to her dashboard web page and can

8 Rafael Marmelo, Pedro Bizarro, Paulo Marques

then be (re-)configured to display results in other forms (e.g., current value, graph of

past values, trends).

The sources, field names, and (aggregated) values are stored in Hypertable using a

vertical format (see Fig. 6). Normal relational databases store tuples in a horizontal

format, which is not space efficient for sparse datasets. Although an interpreted

format is both more efficient than a horizontal or vertical tuple format [6], for

simplicity, and because our global schema (of all sources) is a sparse schema, we

current store data in a vertical format only. We have a (vertical tuple-format) table for

raw data, and extra tables for values aggregated by minute, hour, day, month, and

year.

Fig. 6. Horizontal vs Vertical tuple format2

2 Image from Beckmann et al, “Extending RDBMSs To Support Sparse Datasets Using An

Interpreted Attribute Storage Format”, ICDE'06 [6].

Fig. 5. 9ticks screenshot

9ticks – The Web as a Stream 9

5. Conclusions and Future Work

To conclude, the Internet contains thousands of frequently updated, timestamped,

structured data sources that are not being stored, parsed, aggregated, or queried. New

data management systems with new user interfaces, parsers, storage engines and

delivery mechanisms need to be developed to deal with this ephemeral, yet rich and

very useful information. We are developing such a system, code-named 9ticks, at the

University of Coimbra, Portugal. Unlike other similar systems that also store the past

[1, 16] and capture structured information from the web [7, 8, 9], we are first and

foremost interested in building a system with very high refresh rates over millions of

user-defined data sources extracted from pieces of web pages.

Currently 9ticks already includes the major modules to add sources, collect, parse,

aggregate, store, query and display results. The next steps are the completion of the

Alert Generator module, the Presenter module, and scaling the system to thousands of

sources and hundreds of clients. We also plan to provide APIs so that mashup editors

such as Yahoo! Pipes [19] or Microsoft Popfly [17] can efficiently read data from

9ticks and insert data APIs such that other services or sites can add data onto 9ticks.

References

1. E. Adar, M. Dontcheva, J. Fogarty and D. Weld, “Zoetrope: Interacting With the Ephemeral

Web”, in Proc. of the 21st Annual ACM Symposium on User Interface Software and

Technology (UIST'08), pg. 239-248, Monterey, CA, USA, 2008.

2. Apache Hadoop. http://hadoop.apache.org/. Accessed May 1, 2009.

3. Apache HBase. http://hadoop.apache.org/hbase/. Accessed May 1, 2009.

4. Ricardo Baeza-Yates and Berthier Ribeiro-Neto, “Modern Information Retrieval”, ISBN

020139829X. Addison Wesley, May 1999.

5. R. Baumgartner, O. Frölich, G. Gottlob, “The Lixto Systems Applications in Business

Intelligence and Semantic Web”, in Proc. of the 4th European Semantic Web Conference

(ESWC 2007), pg. 16-26, Innsbruck, Austria, June 3-7, 2007.

6. J. L. Beckmann, A. Halverson, R. Krishnamurthy, J. F. Naughton, “Extending RDBMSs To

Support Sparse Datasets Using An Interpreted Attribute Storage Format”, in Proc. of the

22nd International Conference on Data Engineering (ICDE'06), 3-8 April, 2006.

7. M J. Cafarella, A.Y. Halevy, Y. Zhang, D Z. Wang and E. Wu, “Uncovering the Relational

Web”. In Proc. of the 11th International Workshop on Web and Databases (WebDB'2008),

Vancouver, Canada, June 13, 2008.

8. M J. Cafarella, J. Madhavan and A Y. Halevy, "Web-Scale Extraction of Structured Data",

in SIGMOD Record, Vol. 37(4), pg. 55-61, December 2008.

9. M J. Cafarella, “Extracting and Querying a Comprehensive Web Database”, in Proc. of the

4th Biennial Conference on Innovative Data Systems Research (CIDR'2009), Asilomar, CA,

USA, January 2009.

10.F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A.

Fikes, and R. E. Gruber., “Bigtable: A Distributed Storage System for Structured Data”, in

Proc. of the 7th Symposium on Operating System Design and Implementation (OSDI'06),

pg. 205-218, Seattle, WA, USA, November 2006.

11.J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters”, in

Proc. of the 6th Symposium on Operating System Design and Implementation (OSDI'04),

pg. 137-150, San Francisco, CA, USA, December 2004.

10 Rafael Marmelo, Pedro Bizarro, Paulo Marques

12.T. Erl, “Service-Oriented Architecture: A Field Guide to Integrating XML and Web

Services”, ISBN 0131428985, Prentice Hall, 2004.

13.T. Berners-Lee, J. Hendler and O. Lassila, “The Semantic Web: A new form of Web content

that is meaningful to computers will unleash a revolution of new possibilities”, in Scientific

American, May 2001.

14.M. Massie, B. Chun and D. Culler, “The Ganglia Distributed Monitoring System: Design,

Implementation, and Experience”, in Parallel Computing, Vol. 30(7), pg. 817-840, Elsevier,

July 2004.

15.Hypertable. http://hypertable.org/. Accessed May 1, 2009.

16.Internet Archive. http://www.archive.org. Accessed May 1, 2009.

17.Microsoft Popfly. http://www.popfly.com/. Accessed June 18, 2009.

18.A. Pavlo, E. Paulson, A. Rasin, D. J. Abadi, D. J. DeWitt, S. Madden, M. Stonebraker, “A

Comparison of Approaches to Large-Scale Data Analysis”, in Proc. of the 2009 ACM

SIGMOD International Conference (SIGMOD'2009), Providence, Rhode Island, USA, June

2009.

19.Yahoo! Pipes. http://pipes.yahoo.com/pipes/. Accessed June 18, 2009.

