
Assessing and Optimizing Microarchitectural

Performance of Event Processing Systems

Marcelo R.N. Mendes, Pedro Bizarro, Paulo Marques

CISUC, University of Coimbra,
Dep. Eng. Informática – Pólo II, 3030-290, Coimbra, Portugal

{mnunes, bizarro, pmarques}@dei.uc.pt

Abstract. Event Processing (EP) systems are being progressively used in busi-

ness critical applications in domains such as algorithmic trading, supply chain
management, production monitoring, or fraud detection. To deal with high
throughput and low response time requirements, these EP systems mainly use
the CPU-RAM sub-system for data processing. However, as we show here, col-
lected statistics on CPU usage or on CPU-RAM communication reveal that
available systems are poorly optimized and grossly waste resources. In this pa-
per we quantify some of these inefficiencies and propose cache-aware algo-
rithms and changes on internal data structures to overcome them. We test the
before and after system both at the micro-architecture and application level and

show that: i) the changes improve micro-architecture metrics such as clocks-
per-instruction, cache misses or TLB misses; ii) and that some of these im-
provements result in very high application level improvements such as a 44%
improvement on stream-to-table joins with 6-fold reduction on memory con-
sumption, and order-of-magnitude increase on throughput for moving aggrega-
tion operations.

Keywords: Benchmarking, Complex Event Processing, Performance, Tuning.

1 Introduction

Previous work by Ailamaki [2], Ravishankar [11], and Abadi [1] showed that mi-

cro-architecture inspired improvements such as cache-aware algorithms and changes
of internal data representations can lead to high improvements on the performance of

database or data warehouse systems. Encouraged by this work, we took a similar

position and set-out to discover the micro-architecture performance of Event

Processing (EP) systems.

Using Esper [6], a widely used open-source EP system, we measured the systems’

performance executing common operations such as moving aggregations and stream-

to-table joins. We monitored the system at the micro-architecture level using the Intel

VTune® profiler [8] and also collected application-level metrics such as memory

consumption and peak sustained throughput.

To isolate from secondary effects, we then replicated the main algorithms and data

structures on our own event processing prototype and progressively improved them

with microarchitecture-aware optimizations. These optimizations were then validated

first by running the tuned prototype in a multi-query scenario, and then porting the

modifications back into Esper.

Summary of Contributions

In this paper we make the following contributions:

 We analyzed how current event processing systems perform at both applica-

tion and hardware levels. By collecting and correlating metrics such as

throughput, CPI, and cache misses during execution of continuous queries,

we show that micro-architectural aspects significantly influence the final per-

formance of common event processing tasks, being in some cases the sole

cause for performance degradation when the input is scaled up (Section 3.3).

 We demonstrated how alternate data structures can drastically improve per-

formance and resource consumption in EP systems (Section 3.4).

 We implemented, tested and evaluated an adapted version of the Grace Hash

algorithm [9] for joining event streams with memory-resident tables. Results

revealed that by reducing the impact of micro-architectural aspects on query

execution performance was improve in up to 44 percent (Section 3.5).

 We implemented, tested and evaluated a microarchitecture-aware algorithm

for computing moving aggregations over sliding windows, which provided

performance gains ranging from 28 to 35 percent (Section 3.5).

2 Background

From the microarchitectural point of view, the amount of time a given computa-

tional task T takes to complete depends primarily on two factors: the task size (i.e.,

Instruction Count or IC) and the average duration of instructions (frequently ex-
pressed as Cycles per Instruction or CPI). Algebraically, in cycles [7]:

CPU execution time = IC × CPI

Better performance can be achieved by reducing either factor or both. Traditional-

ly, software developers have focused on reducing IC by improving time complexity of

algorithms, but an increased interest in making a more efficient use of hardware re-

sources has been observed over the last years [2, 3, 12, 13].

To understand how these optimizations targeted at the hardware level work, it is

necessary to know the internals of CPU operation. Every single instruction is ex-

ecuted inside the processor as series of sequential steps across its several functional

units. During this sequence of steps, generally referred as pipeline, CPU instructions

are fetched from memory, decoded, executed and finally have their results stored back
into registers or memory. To increase throughput, instructions in different stag-

es/functional units are processed in parallel (Instruction-Level Parallelism). In ideal

conditions, the processor pipeline remains full most of the time, retiring one or more

instructions per cycle (implying CPI ≤ 1). Many factors, however, can cause instruc-

tions to stall, thus increasing average CPI. The gap between processor and memory

speeds is one of them: an instruction that access data resident in main memory may

require tens to hundreds of CPU cycles to complete. Another typical cause of stalls is

data dependency: when an instruction j depends on a value produced by an instruction

i that was fetched closely before it, j cannot execute until i completes (in fact, if the

processor issues instructions in program order, when instruction j stalls, no later in-
structions can proceed, thus aggravating the performance impact of the data depen-

dency). Finally, control dependencies, which happen when the instruction flow cannot

be determined until a given instruction i (e.g., a conditional branch) completes, can

also adversely affect the degree of instruction-level parallelism achieved.

In order to attenuate the aforementioned stalls, hardware vendors have devised

several techniques. For example, to minimize memory-related stalls, smaller and

faster cache memories are placed in the data path between processor and main memo-

ry. The strategy is to benefit from the locality principle and serve most memory re-

quests with data coming from lower-latency cache accesses. Additionally, data de-

pendencies are minimized by allowing instructions to execute out-of-order inside the

pipeline. Finally, control dependencies are partially addressed via speculative execu-

tion (i.e., the processor executes instructions that lie beyond a conditional branch as if
it had been already resolved).

In practice, the characteristics of the applications determine whether the hardware

techniques above will be successful or not at making the processor execute close to its

full capacity. With that in mind, a number of novel analytical databases had been

developed over the last years, in an attempt to better exploit the internal features of

processors. Examples of microarchitectural optimizations employed by such databas-

es include a column-oriented data organization and compression techniques which

together provide a more efficient use of memory hierarchy [12, 13]. Also, recently

proposed compression algorithms [14] minimize the negative impact of branch mi-

spredictions by removing if-then-else constructs from their critical path.

We argue that similar optimizations can be applied in the context of event

processing systems, resulting in potentially higher gains since in this case data is

manipulated mostly in main memory.

3 Assessing and Improving CPU Performance of EP Systems

This section introduces the workload, benchmark setup and an evaluation of Esper

and of our own prototype with and without CPU and cache-aware optimizations.

3.1 Workload

In order to assess the gains of the optimizations proposed in this work we used a

simple, though representative workload, composed by two common operations per-

formed by event processing systems: moving aggregations over event streams and

correlation of event streams with historic data (join). These two queries and the data-

set are described in detail next.

Dataset

Input data consisted in a generic event stream S and table T with schemas shown in

Figure 1 and Figure 2.

CREATE STREAM S (

 ID integer,

A1 double,

A2 double,

TS long)

Figure 1: Schema of Input Dataset (Stream “S”)

In our tests the values assumed by S attributes are not relevant for query perfor-

mance evaluation, so they were filled with a fixed, pre-generated, data value – this

ensures that measurements are minimally affected by data generation. The exception

is the attribute ID, which is used to join stream S with table T. In this case, S’s ID

was filled with random values uniformly distributed in the range of T’s ID.

 CREATE TABLE T (

 ID integer,

 T1 integer,

 T2 integer,

 T3 integer,

 T4 integer)

Figure 2: Schema of table “T” used in the join query

T’s ID attribute, used to perform the join with the event stream, assumes unique

values ranging from 1 to TABLE_SIZE_IN_ROWS. The other four attributes in T do not

influence query performance and are filled with random data.

Aggregation Query

The aggregation query used in this study computes a moving average over a count-

based sliding window1. The query is shown below using syntax of CQL [4], a SQL-

based query language for continuous stream processing:

 SELECT avg(A1)

FROM S [ROWS N Slide 1]

Figure 3: Aggregation query, written in CQL

For this particular query, every event arrival at stream S causes the output of an

updated result. Parameter N represents the window size, which varies across the tests,

ranging from 1000 to 100 million events.

1 “Count-based” means that the window size is defined in terms of the number of events over

which the computation takes place. “Sliding” means that once the window is full events are
expired one-by-one upon arrival of new events.

Join Query

To examine the behavior of an event processing system when performing a join,

we used a query based on a real use-case of a telecom company that needed to join

streaming call detail records (CDR) (here represented by stream S) with historic data

(represented by table T). In our tests this query is expressed as follows:

SELECT S.ID, S.A1, T.T1

FROM S, T

WHERE S.ID = T.ID

Figure 4: Join query – stream S with table T

Since the goal here is to focus on the performance of processor and memory hie-

rarchy, the table is maintained in main memory, thus eliminating eventual effects of

the I/O subsystem on the results. (As pointed out before, keeping the dataset in memo-

ry is commonplace in most EP applications, especially those which require high

processing throughputs and/or low latencies.) The selectivity of the query is always

100% (i.e., every event is matched against one and only one record in the table) and

the table size is varied across tests, ranging from 1 thousand to 10 million rows.

3.2 Experiments: Setup and Methodology

All the tests were carried out on a server with two Intel Xeon E5420 Quad-Core

processors (Core® microarchitecture, L2-Cache: 12MB, 2.50 GHz, 1333 MHz FSB),

16 GB of RAM, running Windows Server 2008 x64 and Sun Hotspot x64 JVM.

The performance measurements were done as follows:

 A single Java application was responsible for generating, submitting and
consuming tuples during the performance runs. Events are submitted and

processed through local method calls, so that measurements are not affected

by network/communication effects.

 In the tests with join queries, load generation was preceded by an initial load-

ing phase, during which the in-memory table was populated with a given

number of records.

 Load generation started with an initial 1-minute warmup phase, with events

(S tuples) being generated and consumed at the maximum rate supported.

 Warmup was followed by a 15-minute measurement phase, during which we

collected both application-level metrics and hardware-level metrics. Applica-

tion-level metrics, namely throughput and memory consumption, were ga-

thered inside the Java application. Throughput was computed as total event

count divided by elapsed time. Memory consumption was computed using

totalMemory() and freeMemory(), standard Java SDK Runtime

class methods. Hardware-level metrics were obtained using the Intel VTune®

profiler [8], as described in detail next. As in the warmup phase, events were

submitted at the maximum rate sustained by the specific implementation.

 Each test was repeated 3 times and the reported metrics were averaged.

VTune collects metrics by inspecting specific hardware counters provided by Intel

processors. To avoid excessive monitoring overhead, only one or two events are col-

lected at a time – for doing that, VTune breaks event collection in “runs”. In our

tests, each run has a duration of 2 minutes (1 minute for calibration and 1 minute for

counters collection), and 6 runs were necessary to collect all the configured metrics.

We started the experimental evaluation by measuring the performance of the two

queries in the open-source EP engine Esper (Section 3.3) and then implemented the

same basis algorithms employed by it on a separate, custom-code, Java prototype.
These baseline algorithms were then progressively modified to include the proposed

optimizations while we performed new measurements2 (Sections 3.4 and 3.5). Finally,

we validated the optimizations by measuring their performance in more realistic sce-

narios: first with the prototype processing several queries simultaneously (Section

3.6) and then with them being inserted into Esper code (Section 3.7).

The basis algorithm for computing the aggregation query works as follows. The

sliding window is implemented as a circular buffer, internally represented as a fixed-

length array; the average aggregation itself is computed by updating count and sum

state variables upon event arrival/expiration. The join algorithm is also straightfor-

ward: it keeps the table into a hash index structure with the join attribute as key and

then performs a lookup in that hash table every time a new event arrives.

3.3 Preliminary Results

Figure 5 illustrates the results for the join query running at the event processing

engine Esper, using two different tuple representations: Map and POJO (in the former

events are represented as instances

of the standard HashMap Java

class, while in the latter events are

represented as fixed-schema Plain

Java Objects) 3:

Two important observations can

be made from the graph above:

First, for both tuple representations,

the throughput dropped about 40
percent from a join with a 1000-

rows table to a join with a 10M-

rows table. This drop occurred even

though the employed algorithm –

2 We could have implemented the changes only on Esper, but our goal was to assess the per-

formance gains of the optimizations on query processing in spite of any product specificities.
Besides, using a smaller custom-code application makes the effects of code changes more

controllable and understandable.
3 In this work, we focus on Esper due to its open-source nature, which allowed us to port some

of the optimizations here proposed into a real engine. We point out, however, that the results
here presented are representative of a range of event processing engines, given that the beha-
vior exhibited by Esper is similar to what was observed in previous tests with other products
(see [10] for more details).

Figure 5: Performance of Join Query on Esper

hash join – has a O(1) runtime complexity. Second, measured memory consumption

during query execution was 4 to 60 times the space required for keeping the table

data. Examining carefully the hardware metrics and Esper source code, we concluded

that the drop on query performance was due mainly to microarchitectural aspects (and

to a lesser extent, to increased garbage collection activity) and that the excessive

memory consumption was caused by non-optimized internal representation of tuples

as further explored in the next section.

3.4 Optimizing Internal Data Structures

In order to address the problem of excessive memory consumption, we focused

first in optimizing the structures used to keep data items in main memory (i.e., the

window for the aggregation query, and the table for the join query). Specifically, we

were interested in finding out if the original representations used by Esper to represent

the stream and table tuples could be improved and if a column-oriented storage model

would result in enhanced performance in the context of event processing.
It is worthy to notice that column-store formats are especially useful for read-

oriented, scan-oriented, non-ad-hoc queries. Thus, while on one hand EP systems,

with their scan-oriented, non-ad-hoc queries may benefit from column-store represen-

tations, on the other hand, EP systems read/write workloads might be hurt by column-

store representations.

(a) (b)

 (c) (d)

Figure 6: The Different Data Structures used to represent tuples:
(a) Key-Value Map; (b) Array of Objects; (c) POJO; (d) Column-Store

To assess the impact of data structures on query performance, we started

representing events/tuples as instances of the HashMap class (Figure 6(a)), and then

employed progressively more lightweight representations: first as arrays of Objects

(b), and then as fixed-schema Plain Java Objects (POJO) (c). Finally we tested the
column-oriented storage model (d), in two different modalities: first keeping all origi-

nal attributes of events/tuples (here named “Col-Store”) and then keeping (projecting)

only the attribute referenced in the query (“Col-Store Proj.”). In the Col-Store format,

N aligned arrays of primitive types are kept in memory (where “N” is the number of

attributes), while in the Col-Store Proj format only one array containing the values for

the referenced attribute is maintained. Figure 7, Table 1 and Table 2 summarize the

most relevant results for both the aggregation and join queries:

 (a) (b)

Figure 7: Impact of Internal Representation on Performance: (a) Aggregation; (b) Join4.

Table 1: Data Structures and Memory Consumption (in MB): Aggregation Query

Tuple

Format

Window Size

1k 10k 100k 1M 10M 100M

Map 0.8 5.5 51.4 511.5 5,112.9 -

Array 0.5 2.1 17.9 176.5 1,755.0 -

POJO 0.3 0.8 6.3 61.2 682.1 6,103.0

Col-Store 0.2 0.5 2.8 26.9 267.2 2,670.5

Col-Store Proj. 0.2 0.3 0.9 7.8 76.0 763.1

Table 2: Data Structures and Memory Consumption (in MB): Join Query

Tuple

Format

Table Size

100 1k 10k 100k 1M 10M

Map 0.2 1.1 9.3 92.1 920.0 9,131.2

Array 0.2 0.4 2.8 27.3 268.4 2,654.8

POJO 0.2 0.3 1.4 13.6 130.6 1,275.3

Col-Store 0.2 0.3 1.4 13.2 126.8 1,237.0

Col-Store Proj. 0.2 0.3 1.3 11.7 111.5 1,083.8

4 For the sake of clarity, the lines “Col-Store” and “Col-Store Proj” were omitted in the Join

graph since the results with these two implementations were very similar to the POJO case.

The numbers reveal that considerable gains in final performance and resource con-

sumption could be obtained by using more optimized data structures. For the join

query, the most efficient representation achieved more than 3 times more throughput

than the original one, while consuming less than 15% memory space of what was

originally required. The gains for the aggregation query were even more impressive:

the best performing implementation (column-store keeping only required data)

achieved on average about 35 times more throughput than the one using maps as

event representation and reduced memory consumption to around 1,5% of the memo-
ry space occupied by this initial implementation.

Discussion: Aggregation Query

A couple of facts in the aggregation tests results are worth mentioning. First, using

optimized data structures allowed the aggregation query to operate over windows of

larger sizes, which otherwise would not be possible if employing the original non-

optimized tuple representations (e.g., it was not possible to run the aggregation query

over a window of 100M events when they were represented as Maps or arrays of

Objects because these implementations required more memory space than it was
physically available).

Second, the POJO format, although more efficient than Map and array representa-

tions, suffered severe drops in performance in two distinct points of the graph: from

10k to 100k and from 1M on. The collected metrics reveal that the first drop was

caused by microarchitectural aspects (more specifically, an increase in L2 cache

misses), while the second was due to an increased garbage collection activity.

Further results indicate that the column-oriented storage model addressed partially

or even totally the aforementioned issues. For instance, in contrast with the POJO

line, the Col-Store line in Figure 7-a remained steady after 1M. The reason for such

difference is that the column-oriented representation, by using primitive types instead

of Objects, is less susceptible to garbage collection than the POJO. In the best case
(i.e., when keeping in memory only the attribute referenced by the query), the col-

umn-oriented model was also able to eliminate the microarchitectural issues. For that

particular implementation, the memory access pattern is essentially sequential – con-

suming events from the stream and inserting them into the window means sequential-

ly traversing a primitive type array – which maximizes performance at the microarc-

hitectural level and ensures a steady throughput over the most different window sizes.

Indeed, this observation was corroborated experimentally, with the CPI metric re-

maining basically unaffected in all tests of that specific implementation (ranged from

0.850 to 0.878 for windows of 1000 up to 100M events).

Discussion: Join Query
Interestingly, for the join query the column-oriented storage model did not provide

considerable performance gains with respect to the POJO representation. (In fact, both

throughput and memory consumption were quite similar in these two configurations

and for this reason we omitted the results for column-store in Figure 7-b.) This beha-

vior seems to be related to the fact that the amount of memory consumed by the payl-

oad itself (i.e., tuples attributes) in that case is small compared to the overhead of

inherent factors of the Java programming environment (e.g., object alignment, wrap-

pers for primitive types, and especially heavyweight native HashMap class, the struc-

ture used for indexing the table), which hides eventual gains provided by a more con-
cise column-oriented dataset. Overall, the final performance of column-store imple-

mentation for the join query oscillated around +3% and -5% in comparison with the

tests with POJO tuples.

3.5 Improving Algorithms Efficiency at the CPU Level

Nearly all results presented in previous section revealed that the throughput of both

aggregation and join queries dropped significantly as the input size was increased,
even though the theoretical runtime complexity of the employed algorithms is O(1).

In this Section we delve into the causes for this behavior and propose optimizations to

improve algorithms scalability with respect to input size.

Aggregation Query

As mentioned before, the algorithm for computing subtractable [5] aggregations

such as AVG, SUM or COUNT over sliding windows consists essentially in updating

some fixed set of state variables upon event arrival while maintaining the events of

the window in main memory. As such, the algorithm has a O(N) space complexity but

a theoretical O(1) time complexity. In practice, however, several factors can make the

running time of the algorithm grow when the input size is increased. One of them is

garbage collection: generally, the bigger the working set size and the higher the

throughput, the more time will be spent on GCs. Besides, execution efficiency at the

CPU will typically be hurt when more elements are referenced due to an increased
probability of cache misses. This is particularly the case when events are represented

as Objects, because there is no guarantee that consecutive elements in the window

will be allocated contiguously in the heap by the JVM. Therefore, even though the

algorithm logically traverses the window in a sequential way, the memory access

pattern tends to be essentially random. One possible way of eliminating this undesira-

ble effect is to employ the column-oriented storage model, which avoids the random

walks through the heap by keeping attributes as arrays of primitive types. However,

this approach is worthwhile only if the number of attributes referenced in the query is

small. Otherwise, consuming an event from the stream and inserting it into the win-

dow will involve accessing several memory locations (one entry per attribute in dif-

ferent arrays).

We tested, then, a tuned algorithm to minimize this performance penalty due to
multiple inserts. The idea is to avoid references to distant memory locations by using

a L2-resident temporary buffer for accommodating the incoming events. This tempo-

rary buffer consists in N aligned arrays (one per attribute) as in the original window,

but with a capacity of only 100 events. Once these small arrays get full, the events are

copied back to the window, one attribute at a time, so that they can be expired later.

The algorithm is described in detail in Table 3. Figure 8 compares the performance

of the proposed algorithm with the original column-oriented implementation.

Table 3: Cache-Aware Algorithm for Computing Aggregations over Sliding Windows

Input: S: incoming event stream

 K: the size of the L2-resident temporary buffer

Output: R: stream of results

for each event E in S do

for each attribute Ai of event E do

store Ai on the corresponding temporary location Ti

compute aggregation (update aggregator state)

insert aggregation result into output stream R

if temporary buffer T is full then
for each attribute Ai of event E do

for each item Ij in temporary buffer Ti do

copy Ij to the appropriate location in corresponding window Wi

reset the temporary location T

slide the window W in K positions

The optimized algorithm provided gains in performance that ranged from 28 to 35

percent when compared to the

original column-store. The

hardware metrics confirmed

that it indeed exploits better the

characteristics of the CPU: the

CPI was almost half of the CPI

of the original column-store
and L2 cache miss rate was

reduced to around 70% of what

was originally measured. Evi-

dently, this microarchitecture-

aware algorithm is best-suited

for medium-to-large windows,

since for smaller sizes the

working set of the original

column-oriented implementa-

tion already fits in L2 cache.

Join Query
In theory, the cost of a lookup on a hash table should be independent on the num-

ber of elements stored on it, but this ideal rarely can be achieved in practice since

CPU operation – specifically cache behavior – is considerably affected by working set

size. Figure 9 illustrates the correlation between microarchitectural aspects and final

system performance for the join tests with tuples represented as POJO.

Figure 8: Performance Comparison: Conventional
Column-Store Algorithm vs. Microarchitecture-

Aware Algorithm

As it can be noticed from the graph,

query throughput falls in the same pro-

portion as the clock per instruction me-

tric increases, indicating that microarchi-

tectural factors were the major cause for

performance degradation when the table

size was increased. Further analysis of
the hardware metrics confirmed that the

increase in CPI was due to less efficient

memory access patterns. For example, as

the table size was increased from 1,000

rows to 10M rows, L2 cache miss per

instruction metric went from 0.6% to

3.1% and TLB miss penalty metric jumped from 0.3% to 19.4%. Notice also that up to

10k rows, the table fits in the 12MB L2 cache, which explains the negligible perfor-

mance drop from 1k to 10k, and the significant degradation from that point on.

To improve data locality, we implemented an adapted version of the grace hash

join algorithm [9] used in DBMSs. The idea is to reduce the number of times data is

brought from main memory to cache by splitting the whole table into partitions and
accessing them in bulks. The algorithm works as follows:

 When the table is being populated, the records are stored into partitions using a

given partitioning function g (in our tests the table was split into 1000 partitions);

 Incoming events are then processed in batches. They are buffered into a parti-

tioned list until the batch is complete. (The partitioning function is the same as

the one used for splitting the table, which ensures that matching tuples in the

batch and the table will be kept in corresponding partitions).

 Once the batch is complete, the corresponding partitions from event batch and

table are loaded in pairs. The event partitions are then sequentially scanned, per-

forming for every event a lookup on the corresponding table partition.

Figure 10 shows test results with both the conventional hash join algorithm and the
batch grace hash algorithm, for table sizes ranging from 10M rows to 80M rows.

 (a) (b)

Figure 10: Conventional Hash Join vs. Batch Grace Hash Join

Figure 9: Drop on Join Performance

due to Increase in CPI

As it can be seen in (b), the batch algorithm was successful in improving locality of

data accesses, which in turn caused a reduction in average CPI. This resulted in per-

formance gains that ranged from 11 to 44 percent, as illustrated in (a).

Notice that there are a couple of competing factors influencing the performance of

the batch grace hash algorithm. For example, each table partition should ideally fit in

L2 cache in order to minimize the high penalties associated with memory accesses.

Assuming that table size is application-specific and cannot be changed, the only way

this can be achieved is by increasing the number of partitions in the table. Doing so,
however, means that the number of partitions in the batch of events is also increased,

thus reducing the number of events per partition. A reduced number of events per

partition will probably hurt performance as a good fraction of the lookups in the table

will incur in compulsive cache misses. For avoiding this to happen, batch size could

be increased in the same proportion as the number of partitions, but obviously this is

only feasible if there is availability of memory resources. Determining the optimal

values for these parameters is subject for further investigation.

3.6 Optimizations in a Multi-Query Scenario

A natural question that might arise after analyzing the results of previous Sections is

whether similar improvements in performance would be observed when moving from

a scenario with only one continuous query running at a time to a multi-query scenario.

In this Section we answer this question and present the results for a set of tests in

which the proposed optimizations are validated by measuring system performance

during the execution of multiple simultaneous queries. More specifically, we tested

three different situations:

i. N instances of the same query are computed over a single event stream in a

single thread;
ii. N instances of the same query are computed over independent but identical

event streams in a single thread;

iii. N instances of the same query are computed over independent but identical

event streams in N threads.

For aggregation, we performed tests with 1 up to 16 simultaneous queries, with

sliding windows of 10 million events each. For join queries, we tested 1 up to 8 si-

multaneous queries operating over N tables of 10 million records (there was no physi-

cal memory available to test with 16 queries). We then analyzed the evolution of

throughput and hardware-level metrics as we progressively added more queries to the

configuration. The output throughput of each setting is shown in Figure 11.

Application-level and hardware-level metrics collected during tests indicate that

the proposed optimizations are also effective in a multiquery scenario. For instance,
the microachitecture-aware aggregation algorithm introduced in Section 3.5 achieved

superior performance than the conventional column-store in all multi-query tests.

Also, the “Col-Store Proj”, who achieved the highest throughputs in the single

aggregation query scenario due to improved microarchiecutral performance was once

more the best performing implementation.

For join, the speedup of the batch grace hash algorithm over the conventional hash

algorithm oscillated between 1.02 to 1.64. On average, the optimized implementation

achieved 22 percent more throughput than the conventional non-optimized one, a

slightly better speedup than the one observed in the single query scenario (20

percent). Once more, hardware-level metrics followed the trend observed in the single

query scenario (on average, the conventional hash algorithm had a CPI of 7.52 and L2

cache miss rate of 3,5% against a CPI of 3.46 and a L2 cache miss rate of 1,6% for

the batch grace hash algorithm).

 (a) (b) (c)

 (d) (e) (f)

Figure 11: Output Throughput for Aggregation and Join Queries in Multi-Query Scenario

A few words about the shape of the curves: on (a) the output throughput incresased

sligthly when more queries were added as a result of a reduction on the relative

weight of event instantiation on the workload (event is created once, but processed N

times). This constrasts with the workload on (b) where event instantiation is replicated

in the same proportion as queries, which explains the steady line (individual

throughput of queries decreases, but total system throughput remains the same).

Interestingly, the curves on (c) did not present a linear (or close to linear) growth that

one would expect when increasing the amount of resources for a set of independent

tasks (as happened on (f), for example). We found out that this happened because the

CPI metric in these tests increased essentially in the same proportion as the number of
queries. The reason for this behavior, however, is unclear to us since the other

hardware metrics (i.e., cache miss rates, instruction fetch stalls, resource stalls, etc.)

did not show any change that could justify this increase in CPI. Finally, it should be

noticed that the drop on performance when jumping from 4 to 8 queries on (d) was

caused by increased garbage collection activity (for 8 queries the system ran close to

the maximum memory available).

3.7 Optimizations on a Real EP System

In this Section we discuss the results of the tests performed with the event processing

engine Esper, after implementing the proposed optimizations. Figure 12 below shows

the most relevant findings.

 (a) (b)

Figure 12: Optimizations on Esper (Aggregation Query):

(a) Throughput (b) Memory Consumption

As in the tests with the EP prototype, the modified version of Esper using a col-

umn-oriented storage model achieved higher throughputs and scaled better than the

original implementations using Maps or POJOs as event representation. The column-

oriented implementations also proved once more to be useful for reducing memory

consumption for aggregation queries.

It should be noticed however, that many of the performance gains obtained with

other optimizations in the tests with the prototype were hidden by bottlenecks inhe-

rent to Esper implementation. This phenomenon can be seen in Figure 12-a, where

the “Col-Store Proj.” implementation achieved only 2,7% more throughput than the

conventional “Col-Store”, while on the EP prototype the same optimization provided

twice more performance. For the same reason, the cache-aware algorithm for aggrega-
tion and the batch grace hash join algorithm provided only slight performance gains

on Esper (around 1 percent).

4 Conclusions and Future Work

In this paper we started the discussion on how event processing systems can ex-

ecute more efficiently at processors of today. We first collected application and hard-

ware-level metrics during execution of a real event processing system to determine its

performance at CPU. After identifying some issues, we proposed, implemented and

evaluated some changes in data organization and algorithms that together provided

more than order of magnitude performance gains and considerable reductions on

memory consumption. We have also found out that:

1. Microarchitectural aspects played a fundamental role on the performance re-

duction observed when input size was increased;

2. The column-oriented storage model can greatly improve performance for ag-

gregation queries when compared to alternative representations like Plain

Java Objects or key-value Maps. These performance gains, whose roots are

in an improved microarchitectural execution as well as in a reduced garbage

collection activity, are also followed by significant memory savings (56%

up to 98% reduction);
3. The proposed cache-aware optimizations remained effective in a scenario

with multiple queries running simultaneously.

As future directions, we plan focus in the development of more optimized struc-

tures for join queries as well as to work in the optimization of other classes of conti-

nuous queries (e.g., event pattern detection). Other interesting topics worth of further

investigation include how to make a better use of the parallelism provided by modern

multicore processors and the compromise between CPU-level optimizations and

query-plan sharing.

References

1. Abadi, D.J., Madden, S.R., Hachem, N.: Column-stores vs. row-stores: how different are
they really? In Proc. of the 2008 ACM SIGMOD Vancouver, Canada.

2. Ailamaki, A., DeWitt, D.J., Hill, M.D. Wood, D.A.: DBMSs On A Modern Processor:
Where Does Time Go? In Proc. of the 25th VLDB Conference, Edinburgh, Scotland,
1999.

3. Ailamaki, A., DeWitt, D.J., Hill, M.D. Wood, Skounakis, M.: Weaving Relations for
Cache Performance. In Proc.of the 27th VLDB Conference, Roma, Italy, 2001.

4. Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic founda-
tions and query execution. VLDB Journal, Vol. 15, Issue 2: 121-142 (2006).

5. Arasu, A. Widom, J.: Resource Sharing in Continuous Sliding-Window Aggregates. In
Proceedings of the 30th VLDB Conference, Toronto, Canada, 2004.

6. Esper, http://esper.codehaus.org/
7. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative Approach. Mor-

gan Kaufman Publishers, 4th edition, 2007.
8. Intel VTune: http://software.intel.com/en-us/intel-vtune/
9. Kitsuregawa, M., Tanaka, H., Moto-Oka, T.: Application of Hash to Data Base Machine

and Its Architecture. New Generation Computing 1 (1): 63–74, March 1983.
10. Mendes, M.R.N., Bizarro, P., Marques, P.: A Performance Study of Event Processing

Systems. In Proc. of First TPC Technology Conference, TPCTC, Lyon, France, 2009.
11. Ravishankar Ramamurthy, David J. DeWitt. Buffer-pool Aware Query Optimization.

CIDR 2005: 250-261
12. Stonebraker, M., Abadi, D.J., et al: C-Store: A Column-Oriented DBMS. In Proc. of the

31st VLDB Conference, Trondheim, Norway, 2005.
13. Zukowski, M., Boncz, P.A., Nes, N., Heman, S.: MonetDB/X100 - A DBMS In The CPU

Cache. IEEE Data Engineering Bulletin, Vol. 28, No. 2: 17-22 (June 2005).
14. Zukowski, M., Heman, S., Nes, N., Boncz, P.A.: Super-Scalar RAM-CPU Cache Com-

pression. In Proc. of the 22nd ICDE, Atlanta, USA, 2006.

